×

Generalised voltage graphs. (English) Zbl 1509.05094

Summary: A graph with a semiregular group of automorphisms can be thought of as the derived cover arising from a voltage graph. Since its inception, the theory of voltage graphs and their derived covers has been a powerful tool used in the study of graphs with a significant degree of symmetry. We generalise this theory to graphs with a group of automorphisms that is not necessarily semiregular, and we generalise several well-known results of the classical theory of voltage graphs to this broader setting.

MSC:

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M. Conder, All trivalent (cubic) symmetric graphs on up to 10000 vertices, available online at https://www.math.auckland.ac.nz/conder/. · Zbl 0996.05069
[2] Conder, M., Graph symmetries, Famnit Lectures, Vol. 2 (2013), University of Primorska Press: University of Primorska Press Koper, Available online at http://www.hippocampus.si/ISBN/978-961-6832-62-5.pdf
[3] Conder, M.; Zhou, J.-X.; Feng, Y.-Q.; Zhang, M.-M., Edge-transitive bi-Cayley graphs, J. Combin. Theory Ser. B, 145, 264-306 (2020) · Zbl 1448.05098
[4] Devillers, A.; Giudici, M.; Li, C.-H.; Praeger, C., An infinite family of biquasiprimitive 2-arc transitive cubic graphs, J. Algebraic Combin., 35, 173-192 (2012) · Zbl 1236.05101
[5] Du, S.-F.; Xu, M.-Y., A classification of semisymmetric graphs of order \(2 p q\), Commun. Algebr., 28, 2685-2715 (2000) · Zbl 0944.05051
[6] Fang, X.-G.; Praeger, C., Finite two-arc transitive graphs admitting a Suzuki simple group, Comm. Algebra, 27, 3727-3754 (1999) · Zbl 0956.05049
[7] Feng, Y.-Q.; Yang, D.-W.; Zhou, J.-X., Arc-transitive cyclic and dihedral covers of pentavalent symmetric graphs of order twice a prime, Ars Math. Contemp., 15, 499-522 (2018) · Zbl 1411.05112
[8] Frelih, B.; Kutnar, K., Classification of cubic symmetric tetracirculants and pentacirculants, European J. Combin., 34, 169-194 (2013) · Zbl 1254.05074
[9] Giudici, M.; Kovács, I.; Li, C.-H.; Verret, G., Cubic arc-transitive k-multicirculants, J. Combin. Theory Ser. B, 125, 80-94 (2017) · Zbl 1362.05058
[10] Giudici, M.; Li, C.-H.; Praeger, C., Analysing finite locally \(s\)-arc transitive graphs, Trans. Amer. Math. Soc., 356, 291-317 (2004) · Zbl 1022.05033
[11] Goldschmidt, D., Automorphisms of trivalent graphs, Ann. of Math., 111, 377-406 (1980) · Zbl 0475.05043
[12] Gross, J., Voltage graphs, Discrete Math., 9, 3, 239-246 (1974) · Zbl 0286.05106
[13] Gross, J.; Tucker, T. W., Topological Graph Theory (1987), Wiley-Interscience: Wiley-Interscience New York · Zbl 0621.05013
[14] Jajcay, R.; Miklavič, Š.; Šparl, P.; Vasiljević, G., On certain edge-transitive bicirculants, Electron. J. Combin., 26, 2, 28 (2019), Paper 2.6 · Zbl 1409.05138
[15] Kovács, I.; Kutnar, K.; Marušič, D.; Wilson, S., Classification of cubic symmetric tricirculants, Electron. J. Combin., 19, 2, 14 (2012), P24 · Zbl 1244.05152
[16] Kovács, I.; Kuzman, B.; Malnič, A.; Wilson, S., Characterization of edge-transitive 4-valent bicirculants, J. Graph Theory, 69, 441-463 (2012) · Zbl 1242.05121
[17] Kuzman, B.; Malnič, A.; Potočnik, P., Tetravalent vertex- and edge-transitive graphs over doubled cycles, J. Combin. Theory Ser. B., 131, 109-137 (2018) · Zbl 1387.05112
[18] Ling, B.; Lou, B. G.; Wu, C. X., Pentavalent symmetric graphs of order four times an odd square-free integer, Ars Math. Contemp., 16, 81-95 (2019) · Zbl 1416.05139
[19] Malnič, A.; Marušič, D.; Potočnik, P., Elementary Abelian covers of graphs, J. Algebr. Combin., 20, 71-96 (2004) · Zbl 1065.05050
[20] Malnič, A.; Nedela, R.; Škoviera, M., Lifting graph automorphisms by voltage assignments, European J. Combin., 21, 927-947 (2000) · Zbl 0966.05042
[21] M. Mačaj, Strongly regular graphs from coverings? in: A Talk Delivered at the Conference, ATCAGC 2010, Auckland, 15-19 February, https://www.math.auckland.ac.nz/ conder/ATCAGC2010-Abstracts.pdf.
[22] Mednykh, A. D.; Mednykh, I. A., The number of spanning trees in circulant graphs, its arithmetic properties and asymptotic, Discrete Math., 342, 1772-1781 (2019) · Zbl 1414.05080
[23] Mednykh, A. D.; Mednykh, I. A.; Nedela, R., On the Oikawa and Arakawa theorems for graphs, Tr. Inst. Mat. Mekh.. Tr. Inst. Mat. Mekh., Proc. Steklov Inst. Math., 304, 133-140 (2019), translation in · Zbl 1422.31007
[24] Mednykh, A. D.; Nedela, R., Harmonic morphisms of graphs and the Riemann-Hurwitz theorem, Dokl. Math., 93, 23-26 (2016) · Zbl 1339.05320
[25] Miller, R. C., The trivalent symmetric graphs of girth at most 6, J. Combin. Theory, 20, 163-192 (1971) · Zbl 0223.05113
[26] Pan, J.; Ling, B.; Ding, S., On prime-valent symmetric graphs of square-free order, Ars Math. Contemp., 15, 53-65 (2018) · Zbl 1502.05243
[27] Pisanski, T., A classification of cubic bicirculants, Discrete Math., 307, 567-578 (2007) · Zbl 1109.05055
[28] Potočnik, P., Edge-colourings of cubic graphs admitting a solvable vertex-transitive group of automorphisms, J. Combin. Theory Ser. B, 91, 289-300 (2004) · Zbl 1048.05036
[29] Potočnik, P.; Toledo, M., Classification of cubic vertex-transitive tricirculants, Ars Math. Contemp., 18, 1, 1-31 (2020) · Zbl 1444.05152
[30] Potočnik, P.; Toledo, M., Finite cubic graphs admitting a cyclic group of automorphism with at most three orbits on vertices, Discrete Math., 344 (2021), Article 112195 · Zbl 1453.05047
[31] Wang, G.-X.; Lu, Z.-P., The two-arc-transitive graphs of square-free order admitting alternating or symmetric groups, J. Aust. Math. Soc., 104, 127-144 (2018) · Zbl 1432.20003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.