×

Development of precipitation model with the use of the lattice Boltzmann method and its application for the rolling process. (English) Zbl 1506.76133

Summary: A new precipitation model based on the Lattice Boltzmann Method with elements of Cellular Automata is presented in the paper. The model consists of three submodels: nucleation, precipitation growth, and diffusion of niobium and carbon.
The nucleation model used classical nucleation theory and considers homo- and heterogeneous nucleation. The nucleation rate depends on the number of possible nucleation sites, which are defined by dislocation density, i.e. deformation conditions. The nucleation rate depends also on the Zeldowicz parameter, the factor of condensation rate, precipitation work, temperature, and other variables. The nucleation rate is realized in the model by calculating the probability of nucleon appearance in every cell, free of precipitation, and depends on the nucleation rate, the cell volume, and the time step.
The growth or dissolution of the precipitation depends on the model on particle size and prevailing local conditions near the particle. The temperature and concentration define the equilibrium size of the particle.
LBM model is applied to solve the Fourier equation for niobium and carbon diffusion. Near the precipitations equilibrium concentration of niobium and carbon is established according to precipitations size and temperature, while free diffusion is considered in the other space.
Strain-induced precipitation at different temperatures and with the different constant cooling rate was simulated. Results are coincident with theory and experimental researches reported in the scientific literature.
Modeling of precipitation during the rolling process with consideration of recrystallization shows an ability of the model to simulate and study the more complex processes that strain-induced precipitation in single deformation. It can be applied for multi-stages deformation processes to design or optimize them in view of precipitation and microstructure evolution.

MSC:

76M28 Particle methods and lattice-gas methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Palmiere, E. J.; Garcia, C. I.; De Ardo, A. J., Compositional and microstructural changes which attend reheating and grain coarsening in steels containing niobium, Metall. Mater. Trans. A, 25, 277-286 (1994)
[2] Bratland, D. H.; Grong, Ø.; Shercliff, H.; Myhr, O. R.; Tjøtta, S., Overview (124) Modelling of precipitation reactions in industrial processing, Acta Mater., 45, 1-22 (1997)
[3] Lagneborg, R.; Siwecki, T.; Zajac, S.; Hutchinson, B., The role of vanadium in microalloyed steels, Scandanavian J. Metall., 28, 186-238 (1999)
[4] Smith, R. P., Solubility of niobium (columbium) nitride in gamma iron, Trans. Metall. Soc. AIME, 224, 190-191 (1962)
[5] Irvine, K. J.; Pickering, F. B.; Gladman, T., Grain refined C-Mn steels, Iron Steel Inst., 205, 161-182 (1967)
[6] Mori, T.; Tokizane, M.; Yamaguchi, K.; Sunami, E.; Nakazima, Y., Thermodynamic properties of niobium carbides and nitrides in steel, Tetsu Hagane (J. Iron Steel Inst. Jpn.), 54, 763-776 (1968)
[7] Narita, K., Physical chemistry of the group Iva (Ti, Zr), Va (V, Nb, Ta) and the rare earth elements in steel, Trans. Iron Steel Inst. Jpn., 15, 145-152 (1975)
[8] Hoogendoorn, T. M.; Spanraft, M. J., Quantifying the effect of microalloying elements on structures during processing, (Microalloying 75 (1977), Union Carbide Corpopation: Union Carbide Corpopation New York, USA), 75-85
[9] R. Kampmann, R. Wagner, Kinetics of precipitation in metastable binary alloys – theory and application to Cu-1.9 at
[10] Wagner, R.; Kampmann, R., Materials Science and Technology: A Comprehensive Treatment (1991), John Willey & Sons Inc.
[11] Sharma, R. C.; Lakshmanan, V. K.; Kirkaldy, J. S., Solubility of niobium carbide and niobium carbonitride in alloyed austenite and ferrite, Metall. Trans. A, 13, 545-553 (1984)
[12] Dutta, B.; Sellars, C. M., Effect of composition and process variables on Nb(C, N) precipitation in niobium microalloyed austenite, Mater. Sci. Technol., 3, 197-206 (1987)
[13] Balasubramanian, K.; Kirkaldy, J. S., Thermodynamic of Fe-Ti-C and Fe-Nb-C austenites and nonstoichiometric titanium and niobium carbides, (Int. Symp. - Adv. Phase Transitions (1987), Department of Materials Science and Engineering, McMaster University, Pergamon Press: Department of Materials Science and Engineering, McMaster University, Pergamon Press Oxford, United Kingdom, Ontario, Canada), 37-51
[14] Speer, J. G.; Michael, J. R.; Hansen, S. S., Carbonitride precipitation in niobium/vanadium microalloyed steels, Metall. Mater. Trans. A, 18, 211-222 (1987)
[15] Dutta, B.; Valdes, E.; Sellars, C. M., Mechanism and kinetics of strain induced precipitation of Nb(C, N) in austenite, Acta Metall. Mater., 40, 653-662 (1991)
[16] Dutta, B.; Palmiere, E. J.; Sellars, C. M., Modelling the kinetics of strain induced precipitation in Nb microalloyed steels, Acta Mater., 49, 785-794 (2001)
[17] Inoue, K.; Ishikawa, N.; Ohnuma, I.; Ohtani, H.; Ishida, K., Calculation of phase equilibria between austenite and (Nb, Ti, V)(C, N) in microalloyed steels, ISIJ Int., 41, 175-182 (2001)
[18] Klinkenberg, C.; Hulka, K.; Bleck, W., Niobium carbide precipitation in microalloyed steel, Steel Res. Int., 75, 744-752 (2004)
[19] Maugis, P.; Gouné, M., Kinetics of vanadium carbonitride precipitation in steel: A computer model, Acta Mater., 53, 3359-3367 (2005)
[20] Perez, M.; Dumont, M.; Acevedo-Reyes, D., Implementation of classical nucleation and growth theories for precipitation, Acta Mater., 56, 2119-2132 (2008)
[21] Xie, Z. J.; Ma, X. P.; Shang, C. J.; Wang, X. M.; Subramanian, S. V., Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel, Mater. Sci. Eng. A, 641, 37-44 (2015)
[22] Chen, M. Y.; Gouné, M.; Verdier, M.; Bréchet, Y.; Yang, J. R., Interphase precipitation in vanadium-alloyed steels: Strengthening contribution and morphological variability with austenite to ferrite transformation, Acta Mater., 64, 78-92 (2014)
[23] Bu, F. Z.; Wang, X. M.; Chen, L.; Yang, S. W.; Shang, C. J.; Misra, R. D.K., Influence of cooling rate on the precipitation behavior in Ti-Nb-Mo microalloyed steels during continuous cooling and relationship to strength, Mater. Charact., 102, 146-155 (2015)
[24] Medina, S. F., From heterogeneous to homogeneous nucleation for precipitation in austenite of microalloyed steels, Acta Mater., 84, 202-207 (2015)
[25] Peng, Z.; Li, L.; Chen, S.; Huo, X.; Gao, J., Isothermal precipitation kinetics of carbides in undercooled austenite and ferrite of a titanium microalloyed steel, Mater. Des., 108, 289-297 (2016)
[26] Huo, X. D.; Li, L. J.; Peng, Z. W.; Chen, S. J., Effects of TMCP schedule on precipitation, microstructure and properties of Ti-microalloyed high strength steel, J. Iron Steel Res. Int., 23, 593-601 (2016)
[27] Karmakar, A.; Biswas, S.; Mukherjee, S.; Chakrabarti, D.; Kumar, V., Effect of composition and thermo-mechanical processing schedule on the microstructure, precipitation and strengthening of Nb-microalloyed steel, Mater. Sci. Eng. A, 690, 158-169 (2017)
[28] Guillemot, G.; Gandin, C. A., An analytical model with interaction between species for growth and dissolution of precipitates, Acta Mater., 134, 375-393 (2017)
[29] Zhang, H.; Xiong, H.; Wang, D.; Wang, W., Mechanism of NbC heterogeneous nucleation on TiN in microalloyed steel: A first-principles study, Comput. Mater. Sci., 146, 126-133 (2018)
[30] Karapiperis, T., Cellular automaton model of precipitation/dissolution coupled with solute transport, J. Stat. Phys., 81, 165-180 (1995) · Zbl 1106.82352
[31] Fujita, N.; Bhadeshia, H. K.D. H., Modelling precipitation of niobium carbide in austenite: multicomponent diffusion, capillarity, and coarsening, Mater. Sci. Technol., 17, 403-408 (2001)
[32] Hin, C.; Bréchet, Y.; Maugis, P.; Soisson, F., Kinetics of heterogeneous dislocation precipitation of NbC in alpha-iron, Acta Mater., 56, 5535-5543 (2008)
[33] Du, Q.; Poole, W. J.; Wells, M. A., A mathematical model coupled to CALPHAD to predict precipitation kinetics for multicomponent aluminum alloys, Acta Mater., 60, 3830-3839 (2012)
[34] Rougier, L.; Jacot, A.; Gandin, C. A.; Di Napoli, P.; Théry, P. Y.; Ponsen, D.; Jaquet, V., Numerical simulation of precipitation in multicomponent Ni-base alloys, Acta Mater., 61, 6396-6405 (2013)
[35] Den Ouden, D.; Zhao, L.; Vuik, C.; Sietsma, J.; Vermolen, F. J., Modelling precipitate nucleation and growth with multiple precipitate species under isothermal conditions: Formulation and analysis, Comput. Mater. Sci., 79, 933-943 (2013)
[36] Marynowski, P.; Adrian, H.; Pietrzyk, M., Cellular automata model of precipitation in microalloyed niobium steels, Comput. Methods Mater. Sci., 13, 452-459 (2013)
[37] Adrian, H., Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without additions of aluminium, Mater. Sci. Technol., 8, 406-420 (1992)
[38] Bonvalet, M.; Philippe, T.; Sauvage, X.; Blavette, D., Modeling of precipitation kinetics in multicomponent systems: Application to model superalloys, Acta Mater., 100, 169-177 (2015)
[39] Szyndler, J.; Grosman, F.; Tkocz, M.; Madej, L., Numerical and experimental investigation of the innovatory incremental forming process dedicated for the elaerospace industry, Metall. Mater. Trans. A, 11, 5522-5533 (2016)
[40] Madej, L.; Hodgson, P. D.; Pietrzyk, M., Development of the multi-scale analysis model to simulate strain localization occurring during material processing, Arch. Comput. Methods Eng., 16, 287-318 (2009) · Zbl 1360.74161
[41] Cebo-Rudnicka, A.; Malinowski, Z.; Telejko, T., Analysis of thermal stresses and strains developing during the heat treatment of windmill shaft, Acta Metall. Mater., 62, 459-471 (2017)
[42] Gribkov, E. P.; Perig, A. V., Research of energy-power parameters during powder wire flattening, Int. J. Adv. Manuf. Technol., 85, 2887-2900 (2016)
[43] Perig, A. V.; Golodenko, N. N., CFD 2D description of local flow of polymer workpiece through a modified U-shaped die during equal channel multiple angular extrusion, Mater. Res.-Ibero-Am. J. Mater., 19, 602-610 (2016)
[44] Perig, A. V.; Golodenko, N. N., Effect of workpiece viscosity on strain unevenness during equal channel angular extrusion: CFD 2D solution of Navier-Stokes equations for the physical variables ‘flow velocities-punching pressure’, Mater. Res. Express, 3, Article 115301 pp. (2016)
[45] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases, Phys. Rev., 94, 515-525 (1954) · Zbl 0055.23609
[46] Majta, J., Complete Model for Niobium-Microalloyed Steels Deformed under Hot Working Conditions, Rozprawy, Monografie (2000), Kraków AGH
[47] Beynon, J. H.; Sellars, C. M., Modelling microstructure and its effects during multipass hot rolling, ISIJ Int., 32, 359-367 (1992)
[48] Hodgson, P. D.; Gibbs, R. K., A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels, ISIJ Int., 32, 1329-1338 (1992)
[49] Misaka, Y.; Yoshimoto, T. J., Formularization of mean resistance to deformation of plain carbon steels at elevated temperature, J. Jpn. Soc. Technol. Plast., 8, 414-442 (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.