×

An embedded variable step IMEX scheme for the incompressible Navier-Stokes equations. (English) Zbl 1506.76069

Summary: This report presents a series of implicit-explicit (IMEX) variable stepsize algorithms for the incompressible Navier-Stokes equations (NSE). Here, IMEX means the nonlinear term is treated fully explicitly while the remaining terms are treated implicitly. With the advent of new computer architectures there has been growing demand for low memory solvers of this type. The addition of time adaptivity improves the accuracy and greatly enhances the efficiency of the algorithm. We prove energy stability of an embedded first-second order IMEX pair. For the first order member of the pair, we prove stability for variable stepsizes, and analyze convergence. We believe this to be the first proof of this type for a variable stepsize IMEX scheme for the incompressible NSE. We then define and test a variable stepsize, variable order IMEX scheme using these methods. Our work contributes several firsts for IMEX NSE schemes, including an energy argument and error analysis of a two-step, variable stepsize method, and embedded error estimation for an IMEX multi-step method.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

Matlab; CUDA; FEniCS
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] John, V.; Rang, J., Adaptive time step control for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 199, 9, 514-524 (2010), URL http://www.sciencedirect.com/science/article/pii/S0045782509003417 · Zbl 1227.76048
[2] Kay, D.; Gresho, P.; Griffiths, D.; Silvester, D., Adaptive time-stepping for incompressible flow Part II: Navier-Stokes equations, SIAM J. Sci. Comput., 32, 111-128 (2010) · Zbl 1410.76293
[3] Besier, M.; Rannacher, R., Goal-oriented space-time adaptivity in the finite element Galerkin method for the computation of nonstationary incompressible flow, Internat. J. Numer. Methods Fluids, 70, 9, 1139-1166 (2012), arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.2735, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2735 · Zbl 1412.76060
[4] Zheng, L.; Zhang, H.; Gerya, T.; Knepley, M.; Yuen, D. A.; Shi, Y., Implementation of a multigrid solver on a GPU for Stokes equations with strongly variable viscosity based on Matlab and CUDA, Int. J. High Perform. Comput. Appl., 28, 1, 50-60 (2014)
[5] Crouzeix, M.; Lisbona, F., The convergence of variable-stepsize, variable-formula, multistep methods, SIAM J. Numer. Anal., 21, 3, 512-534 (1984) · Zbl 0542.65038
[6] Dahlquist, G. G.; Liniger, W.; Nevanlinna, O., Stability of two-step methods for variable integration steps, SIAM J. Numer. Anal., 20, 5, 1071-1085 (1983), URL http://www.jstor.org/stable/2157119 · Zbl 0526.65049
[7] Layton, W.; Trenchea, C., Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations, Appl. Numer. Math., 62, 2, 112-120 (2012), URL http://www.sciencedirect.com/science/article/pii/S0168927411001930 · Zbl 1237.65101
[8] Layton, W.; Pei, W.; Qin, Y.; Trenchea, C., Analysis of the variable step method of Dahlquist, Liniger and Nevanlinna for fluid flow (2020), ArXiv arXiv:2001.08640
[9] Johnston, H.; Liu, J., Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term, J. Comput. Phys., 199, 1, 221-259 (2004), URL http://www.sciencedirect.com/science/article/pii/S002199910400083X · Zbl 1127.76343
[10] Marion, M.; Temam, R., Navier-Stokes equations: Theory and approximation, (Numerical Methods for Solids (Part 3) Numerical Methods for Fluids (Part 1). Numerical Methods for Solids (Part 3) Numerical Methods for Fluids (Part 1), Handbook of Numerical Analysis, vol. 6 (1998), Elsevier), 503-689, URL http://www.sciencedirect.com/science/article/pii/S1570865998800100 · Zbl 0905.00032
[11] Baker, G.; Dougalis, V.; Karkashian, O., On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations, Math. Comput., 39, 339-375 (1982) · Zbl 0503.76038
[12] He, Y., The Euler implicit/explicit scheme for the 2d time-dependent Navier-Stokes equations with smooth or non-smooth initial data, Math. Comp., 77, 264, 2097-2124 (2008), URL http://www.jstor.org/stable/40234603 · Zbl 1198.65222
[13] Ahmed, N.; John, V., Adaptive time step control for higher order variational time discretizations applied to convection-diffusion-reaction equations, Comput. Methods Appl. Mech. Engrg., 285, 83-101 (2015), URL http://www.sciencedirect.com/science/article/pii/S0045782514004253 · Zbl 1425.65106
[14] Boffi, D., Stability of higher order triangular Hood-Taylor methods for the stationary stokes equations, Math. Models Methods Appl. Sci., 04, 223-235 (1994) · Zbl 0804.76051
[15] Boffi, D., Three-dimensional finite element methods for the Stokes problem, SIAM J. Numer. Anal., 34, 2, 664-670 (1997) · Zbl 0874.76032
[16] Gunzburger, M. D., Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms (2012), Elsevier
[17] Brenner, S. C.; Scott, R., The Mathematical Theory of Finite Element Methods, Vol. 15 (2008), Springer Science & Business Media · Zbl 1135.65042
[18] Girault, V.; Raviart, P. A., Finite element approximation of the Navier-Stokes equations, (Lecture Notes in Mathematics, vol. 749 (1979), Springer-Verlag: Springer-Verlag Berlin), vii+200 · Zbl 0413.65081
[19] Layton, W. J., Introduction to the Numerical Analysis of Incompressible Viscous Flows, Vol. 6 (2008), Society for Industrial and Applied Mathematics (SIAM) · Zbl 1153.76002
[20] Guzel, A.; Layton, W., Time filters increase accuracy of the fully implicit method, BIT Numer. Math., 58, 301-315 (2018) · Zbl 1444.65026
[21] DeCaria, V.; Layton, W.; Zhao, H., A time-accurate, adaptive discretization for fluid flow problems (2018), ArXiv arXiv:1810.06705
[22] Becker, J., A second order backward difference method with variable steps for a parabolic problem, BIT Numer. Math., 38, 4, 644-662 (1998) · Zbl 0923.65050
[23] Schroeder, P. W.; Lehrenfeld, C.; Linke, A.; Lube, G., Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier-Stokes equations, SeMA, 75, 629-653 (2018) · Zbl 1421.35253
[24] Chen, W.; Wang, X.; Yan, Y.; Zhang, Z., A second order BDF numerical scheme with variable steps for the Cahn-Hilliard equation, SIAM J. Numer. Anal., 57, 1, 495-525 (2019) · Zbl 1435.65142
[25] DeCaria, V.; Guzel, A.; Layton, W.; Li, Y., A new embedded variable stepsize, variable order family of low computational complexity (2018), ArXiv arXiv:1810.06670
[26] Alnæs, M.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M.; Wells, G., The FEniCS project version 1.5, Arch. Numer. Softw., 3, 100 (2015), URL http://journals.ub.uni-heidelberg.de/index.php/ans/article/view/20553
[27] Taylor, G., On the decay of vortices in a viscous fluid, Lond. Edinb. Dublin Phil. Mag. J. Sci., 46, 274, 671-674 (1923) · JFM 49.0607.02
[28] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 104, 745-762 (1968) · Zbl 0198.50103
[29] Berselli, L. C., On the large eddy simulation of the Taylor-Green vortex, J. Math. Fluid Mech., 7, 2, S164-S191 (2005) · Zbl 1067.76049
[30] Dettmer, W.; Perić, D., An analysis of the time integration algorithms for the finite element solutions of incompressible Navier-Stokes equations based on a stabilised formulation, Comput. Methods Appl. Mech. Engrg., 192, 9, 1177-1226 (2003), URL http://www.sciencedirect.com/science/article/pii/S0045782502006035 · Zbl 1091.76521
[31] Olshanskii, M.; Lube, G.; Heister, T.; Löwe, J., Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198, 49-52, 3975-3988 (2009) · Zbl 1231.76161
[32] Case, M. A.; Ervin, V. J.; Linke, A.; Rebholz, L. G., A connection between Scott-Vogelius and grad-div stabilized Taylor-Hood FE approximations of the Navier-Stokes equations, SIAM J. Numer. Anal., 49, 4, 1461-1481 (2011) · Zbl 1244.76021
[33] de Frutos, J.; García-Archilla, B.; John, V.; Novo, J., Analysis of the grad-div stabilization for the time-dependent Navier-Stokes equations with inf-sup stable finite elements, Adv. Comput. Math., 44, 1, 195-225 (2018) · Zbl 1404.65188
[34] Fiordilino, J.; Layton, W.; Rong, Y., An efficient and modular grad-div stabilization, Comput. Methods Appl. Mech. Engrg., 335, 327-346 (2018), URL http://www.sciencedirect.com/science/article/pii/S004578251830104X · Zbl 1440.76058
[35] Guermond, J.-L.; Minev, P. D., High-order time stepping for the Navier-Stokes equations with minimal computational complexity, J. Comput. Appl. Math., 310, 92-103 (2017), URL http://www.sciencedirect.com/science/article/pii/S0377042716302138 · Zbl 1381.76217
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.