×

Routley star and hyperintensionality. (English) Zbl 07345775

Summary: We compare the logic HYPE recently suggested by H. Leitgeb as a basic propositional logic to deal with hyperintensional contexts and Heyting-Ockham logic introduced in the course of studying logical aspects of the well-founded semantics for logic programs with negation. The semantics of Heyting-Ockham logic makes use of the so-called Routley star negation. It is shown how the Routley star negation can be obtained from Dimiter Vakarelov’s theory of negation and that propositional HYPE coincides with the logic characterized by the class of all involutive Routley star information frames. This result provides a much simplified semantics for HYPE and also a simplified axiomatization, which shows that HYPE is identical with the modal symmetric propositional calculus introduced by G. Moisil in 1942. Moreover, it is shown that HYPE can be faithfully embedded into a normal bi-modal logic based on classical logic. Against this background, we discuss the notion of hyperintensionality.

MSC:

03-XX Mathematical logic and foundations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Białynicki-Birula, B.; Rasiowa, H., On the representation of quasi-Boolean algebras, Bulletin de l’Academie Polonaise des Sciences, 5, 259-261 (1957) · Zbl 0082.01403
[2] Cabalar, P., Odintsov, S.P., & Pearce, D. (2006). Logical foundations of well-founded semantics. In Doherty, P. et al. (Eds.) Principles of knowledge representation and reasoning: proceedings of the 10-th international conference (KR2006) (pp. 25-36). Menlo Park: AAAI Press.
[3] da Costa, NCA, On the theory of inconsistent formal systems, Notre Dame Journal of Formal Logic, 15, 497-510 (1974) · Zbl 0236.02022
[4] Cresswell, M., Hyperintensional logic, Studia Logica, 34, 25-38 (1975) · Zbl 0307.02017
[5] Došen, K., Negation as a modal operator, Reports on Mathematical Logic, 20, 15-27 (1986) · Zbl 0626.03006
[6] Drobyshevich, SA, Double negation operator in logic N∗, Journal of Mathematical sciences, 205, 3, 389-402 (2015) · Zbl 1349.03011
[7] Drobyshevich, SA; Odintsov, SP, Finite model property for negative modalities, Siberian Electronic Mathematical Reports, 10, 1-21 (2013) · Zbl 1330.03043
[8] Dunn, JM, Star and Perp: Two Treatments of Negation, Philosophical Perspectives, 7, 331-357 (1993)
[9] Font, JM, Abstract algebraic logic an introductory textbook (2016), London: College Publications, London · Zbl 1375.03001
[10] Horn, L., & Wansing, H. (2015). Negation, the Stanford encyclopedia of philosophy (Summer 2015 Edition). In EN Zalta (Ed.), http://plato.stanford.edu/archives/spr2020/entries/negation/.
[11] Humberstone, L., The connectives (2011), Cambridge: MIT Press, Cambridge · Zbl 1242.03002
[12] Humberstone, L. (2018). Sentence connectives in formal logic, the Stanford encyclopedia of philosophy (Summer 2018 Edition). In E.N. Zalta (Ed.), https://plato.stanford.edu/archives/spr2020/entries/connectives-logic/.
[13] Iturrioz, L., Sur une classe particulière d’algèbres de Moisil, C.R. Acad. Sc. Paris, 267, 585-588 (1968) · Zbl 0182.00803
[14] Jago, M. (2014). The Impossible. An Essay on Hyperintensionality. Oxford University Press.
[15] Johansson, J., Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus, Compositio Mathematica, 4, 119-136 (1937) · JFM 62.1045.08
[16] Kamide, N.; Wansing, H., Proof theory of N4-related paraconsistent logics, studies in logic, Vol. 54 (2015), London: College Publications, London · Zbl 1436.03003
[17] Leitgeb, H., HYPE: a system of hyperintensional logic (with an application to semantic paradoxes), Journal of Philosophical Logic, 48, 2, 305-405 (2019) · Zbl 1457.03057
[18] Mares, E., Relevant logic: a philosophical interpretation (2004), Cambridge: Cambridge University Press, Cambridge
[19] Moisil, GC, Logique modale, Disquisitiones Mathematicae et Physicae, 2, 3-98 (1942) · Zbl 0063.04064
[20] Monteiro, A. (1969). Sur quelques extensions du calcul propositionnel intuitioniste. In IVème congrès des mathématiciens d’expression latine. Bucarest 17.-24.
[21] Monteiro, A., Sur les algèbres de Heyting symétriques, Portugaliae Mathematica, 39, 1-4, 1-237 (1980) · Zbl 0582.06012
[22] Nelson, D.; Almukdad, A., Constructible falsity and inexact predicates, Journal of Symbolic Logic, 49, 1, 231-233 (1984) · Zbl 0575.03016
[23] Odintsov, SP, Combining intuitionistic connectives and Routley negation, Siberian Electronic Mathematical Reports, 7, 21-41 (2010) · Zbl 1329.68058
[24] Odintsov, SP; Wansing, H., The logic of generalized truth values and the logic of bilattices, Studia Logica, 103, 91-112 (2015) · Zbl 1364.03036
[25] Odintsov, S.P., & Wansing, H. (2016). On the methodology of paraconsistent logic. In Andreas, H., & Verdée, P. (Eds.) Logical studies of paraconsistent reasoning in science and mathematics (pp. 175-204): Springer. · Zbl 1429.03109
[26] Odintsov, SP; Wansing, H., Disentangling FDE-based paraconsistent modal logics, Studia Logica, 105, 6, 1221-1254 (2017) · Zbl 1417.03160
[27] Omori, H.; Wansing, H., 40 years of FDE: an introductory overview, Studia Logica, 105, 1021-1049 (2017) · Zbl 1417.03027
[28] Priest, G., Many-valued modal logics: a simple approach, Review of Symbolic Logic, 1, 2, 190-203 (2008) · Zbl 1206.03022
[29] Restall, G. (1999). Negation in relevant logics (how i stopped worrying and learned to love the Routley star). In Gabbay, D., & H Wansing, H (Eds.) What is negation? (pp. 53-76). Dordrecht: Springer. · Zbl 0974.03026
[30] Routley, R., & Meyer, R.K. (1973). The semantics of entailment I. In Leblanc, H. (Ed.) Truth, syntax and modality (pp. 199-243). North-Holland. · Zbl 0317.02017
[31] Routley, R.; Routley, V., Semantics of first-degree entailment, Noûs, 6, 335-359 (1972) · Zbl 1366.03122
[32] Sankappanavar, HP, Heyting algebras with a dual lattice endomorphism, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 33, 565-573 (1987) · Zbl 0633.06005
[33] Shramko, Y.; Wansing, H., Truth and falsehood. An inquiry into generalized logical values, trends in logic, Vol. 36 (2011), Berlin: Springer, Berlin · Zbl 1251.03002
[34] Speranski, S. (2019). Negation as a modal operator in a quantified setting, submitted.
[35] Sylvan, R., Variations on da Costa C systems and dual-intuitionistic logics I. Analyses of Cω and CCω, Studia Logica, 49, 47-65 (1990) · Zbl 0733.03016
[36] Urquhart, A., Distributive lattices with a dual homomorphic operation, Studia Logica, 38, 201-209 (1979) · Zbl 0425.06008
[37] Van Gelder, A.; Ross, KA; Schlipf, JS, The well founded semantics for general logic programs, Journal of the Association for Computing Machinery, 38, 620-650 (1991) · Zbl 0799.68045
[38] Vakarelov, D. (1976). Theory of negation in certain logical systems. Algebraic and semantical approach. Ph.D. dissertation. University of Warsaw.
[39] Vakarelov, D. (1976). Obobschennye reshetki Nelsona, In Chetvertaya Vsesoyuznaya Conferenciya po Matematicheskoy Logike, tezisy dokladov i soobschtenii, Kishinev. [Generalized Nelson’s lattices].
[40] Vakarelov, D. (1989). Consistency, completeness and negation. In Priest, G. et al. (Eds.) Paraconsistent logic. Essays on the inconsistent (pp. 328-363). Münich: Philosophia Verlag. · Zbl 0692.03016
[41] Vakarelov, D., Nelson’s negation on the base of weaker versions of intuitionistic negation, Studia Logica, 80, 393-430 (2005) · Zbl 1086.03026
[42] Wansing, H., Falsification, natural deduction, and bi-intuitionistic logic, Journal of Logic and Computation, 26, 425-450 (2016) · Zbl 1444.03009
[43] Wansing, H. (2016). On split negation, strong negation, information, falsification, and verification. In Bimbó, K., & Michael, J (Eds.) Dunn on information based logics (pp. 161-189): Springer. · Zbl 1439.03057
[44] Wansing, H., A more general general proof theory, Journal of Applied Logic, 25, 23-46 (2017) · Zbl 1436.03294
[45] Williamson, T., Indicative versus subjunctive conditionals, congruential versus non-hyperintensional contexts, Philosophical Issues, 16, 310-333 (2006)
[46] Wójcicki, R., Referential matrix semantics for propositional calculi, Bulletin of the Section of Logic, 8, 170-176 (1979) · Zbl 0435.03016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.