×

Numerical solution of the inverse problem of thermal diagnostics of friction in a system of radial sliding bearings with an account of rotation of the shaft. (English) Zbl 1473.65172

Summary: We propose the development of a method of thermal diagnostics of friction for a bearing system on a common rotating shaft. The method allows determining the friction forces torque by solving the boundary inverse problem of heat exchange to restore the frictional functions heat generation from temperature data. The influence of errors is investigated by computational experiments on the accuracy of restore of the frictional heat generation functions in temperature data in sliding bearings. We propose to solve the problem on local intervals with the subsequent ‘gluing’ of solutions at determining the solution of the inverse problem in a wide time interval with a small step necessary to take into account the shaft rotation.

MSC:

65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
65K10 Numerical optimization and variational techniques
65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
80A23 Inverse problems in thermodynamics and heat transfer
80M20 Finite difference methods applied to problems in thermodynamics and heat transfer
80M50 Optimization problems in thermodynamics and heat transfer
74F05 Thermal effects in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yang Y-C, Chen W-L. A nonlinear inverse problem in estimating the heat flux of the disc in a disc brake system. Appl Thermal Eng. 2011;31:2439-2448. doi: 10.1016/j.applthermaleng.2011.04.008 · doi:10.1016/j.applthermaleng.2011.04.008
[2] Wang S-K, Lee H-L, Yang Y-C. Inverse problem of estimating time-dependent heat generation in a frictional heated strip and foundation. Int Commun Heat Mass Trans. 2009;36:925-930. doi: 10.1016/j.icheatmasstransfer.2009.07.001 · doi:10.1016/j.icheatmasstransfer.2009.07.001
[3] Yang YC, Chu SS, Chang WJ, et al. Estimation of heat flux and temperature distributions in a composite strip and homogeneous foundation. Int Commun Heat Mass Trans. 2010;37(5):495-500. doi: 10.1016/j.icheatmasstransfer.2010.02.005 · doi:10.1016/j.icheatmasstransfer.2010.02.005
[4] Chen WL, Yang YC, Chu SS. Estimation of heat generation at the interface of cylindrical bars during friction process. Appl Thermal Eng. 2009;29:351-357. doi: 10.1016/j.applthermaleng.2008.03.001 · doi:10.1016/j.applthermaleng.2008.03.001
[5] Chen WL, Yang YC. Inverse problem of estimating the heat flux at the roller \(/\) workpiece interface during a rolling process. Appl Thermal Eng. 2010;30:1247-1254. doi: 10.1016/j.applthermaleng.2010.02.007 · doi:10.1016/j.applthermaleng.2010.02.007
[6] Bauzin J-G, Keruzone N, Laraqi N, et al. Identification of the flux generated by friction in an aircraft braking system. Int J Thermal Sci. 2018;130:449-456. doi: 10.1016/j.ijthermalsci.2018.05.008 · doi:10.1016/j.ijthermalsci.2018.05.008
[7] Starostin NP, Kondakov AS, Vasilieva MA. Identification of friction torque in a sliding bearing by thermal data. Inverse Probl Sci Eng. 2015;23(8):1388-1404. doi: 10.1080/17415977.2015.1025070 · Zbl 1326.74011
[8] Starostin NP, Kondakov AS. Boundary inverse problems of heat exchange for sliding bearing control and diagnostics. Inverse Probl Eng. 1999;7:565-580. doi: 10.1080/174159799088027712
[9] Floquet A, Play D. Contact temperature in dry bearings: three dimensional theory and verification. ASME. J. Lubr. Technol. 1981;103:243-252. · doi:10.1115/1.3251636
[10] Samarsky AA. Theory of difference schemes. Moscow: Nauka; 1997.
[11] Tikhonov RS, Starostin NP. Modeling of thermal processes in the bearing system on a common shaft taking into consideration its rotational speed. J Frict Wear. 2014;35(6):477-482. doi: 10.3103/S1068366614060154 · doi:10.3103/S1068366614060154
[12] Tikhonov AN. Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 1963;4(4):1035-1038. · Zbl 0141.11001
[13] Alifanov OM, Artyukhin EA, Rumyantsev SV. Extreme methods for solving ill-posed problems. Moscow: Nauka; 1988. · Zbl 0657.35003
[14] Alifanov OM. Inverse heat transfer problems. Berlin: Springer-Verlag; 1994. · Zbl 0979.80003 · doi:10.1007/978-3-642-76436-3
[15] Alifanov OM, Artyukhin EA, Rumyantsev SV. Extreme methods for solving ill-Posed problems with application to inverse heat transfer problems. New York: Begell House Inc; 1995. · Zbl 1006.35001
[16] Artyukhin EA, Rumyantsev SV. Optimal choice of descent steps in gradient methods of solution of inverse heat-conduction problems. J Eng Phys. 1980;39(2):865-869.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.