×

Efficient analysis of dense fiber reinforcement using a reduced embedded formulation. (English) Zbl 07360490

Summary: In this paper we alleviate limitations of the conventional embedded reinforcement formulation for applications with dense fiber contents. We demonstrate that by condensing the fiber degrees of freedom during the assembly stage, the condition number of the resultant stiffness matrix is effectively reduced and the use of iterative solvers is facilitated even without preconditioning. Numerical benchmarks consisting of very large numbers of high aspect ratio discrete fibers are performed, and major advantages are reported in terms of the computational efficiency of the solution method. We apply the solution method to a set of examples in the modeling of the fiber reinforced composites, specifically the estimation of the homogenized mechanical properties of the discontinuous fiber composites and modeling of the compression molding process. In the latter case, a specimen containing more than 2 million discrete fibers is analyzed.

MSC:

74-XX Mechanics of deformable solids

Software:

FEAPpv
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Advani, SG; Tucker, CL III, The use of tensors to describe and predict fiber orientation in short fiber composites, J Rheol, 31, 8, 751-784 (1987) · doi:10.1122/1.549945
[2] Balakrishnan, S.; Murray, DW, Finite element prediction of reinforced concrete behavior (1986), Edmonton: Department of Civil Engineering, University of Alberta, Edmonton
[3] Barzegar, F.; Maddipudi, S., Three-dimensional modeling of concrete structures. II: reinforced concrete, J Struct Eng, 123, 10, 1347-1356 (1997) · doi:10.1061/(ASCE)0733-9445(1997)123:10(1347)
[4] Berger, H.; Kari, S.; Gabbert, U.; Rodriguez-Ramos, R.; Guinovart, R.; Otero, JA; Bravo-Castillero, J., An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites, Int J Solids Struct, 42, 21, 5692-5714 (2005) · Zbl 1330.74060 · doi:10.1016/j.ijsolstr.2005.03.016
[5] Casarin, MA, Timely communication: diagonal edge preconditioners in p-version and spectral element methods, SIAM J Sci Comput, 18, 2, 610-620 (1997) · Zbl 0939.65070 · doi:10.1137/S1064827595292321
[6] Chen, Y.; Pan, F.; Guo, Z.; Liu, B.; Zhang, J., Stiffness threshold of randomly distributed carbon nanotube networks, J Mech Phys Solids, 84, 395-423 (2015) · doi:10.1016/j.jmps.2015.07.016
[7] Das, M.; MacKintosh, FC, Poisson’s ratio in composite elastic media with rigid rods, Phys Rev Lett, 105, 13, 138102 (2010) · doi:10.1103/PhysRevLett.105.138102
[8] Durand, R.; Farias, MM; Pedroso, DM, Computing intersections between non-compatible curves and finite elements, Comput Mech, 56, 3, 463-475 (2015) · Zbl 1326.65026 · doi:10.1007/s00466-015-1181-y
[9] Elwi, AE; Hrudey, TM, Finite element model for curved embedded reinforcement, J Eng Mech, 115, 4, 740-754 (1989) · doi:10.1061/(ASCE)0733-9399(1989)115:4(740)
[10] Every, AG; Tzou, Y.; Hasselman, DPH; Raj, R., The effect of particle size on the thermal conductivity of ZnS/diamond composites, Acta Metall Mater, 40, 1, 123-129 (1992) · doi:10.1016/0956-7151(92)90205-S
[11] Finkel, RA; Bentley, JL, Quad trees: a data structure for retrieval on composite keys, Acta Inform, 4, 1, 1-9 (1974) · Zbl 0278.68030 · doi:10.1007/BF00288933
[12] Gardea, F.; Naraghi, M.; Lagoudas, D., Effect of thermal interface on heat flow in carbon nanofiber composites, ACS Appl Mater Interfaces, 6, 2, 1061-1072 (2013) · doi:10.1021/am4046102
[13] Goudarzi, M.; Simone, A., Discrete inclusion models for reinforced composites: comparative performance analysis and modeling challenges, Comput Methods Appl Mech Eng, 355, 535-557 (2019) · Zbl 1441.74056 · doi:10.1016/j.cma.2019.06.026
[14] Goudarzi, M.; Simone, A., Fiber neutrality in fiber-reinforced composites: Evidence from a computational study, Int J Solids Struct, 156-157, 14-28 (2019) · doi:10.1016/j.ijsolstr.2018.07.023
[15] Guyan, RJ, Reduction of stiffness and mass matrices, AIAA J, 3, 2, 380 (1965) · doi:10.2514/3.2874
[16] Hammel, E.; Tang, X.; Trampert, M.; Schmitt, T.; Mauthner, K.; Eder, A.; Pötschke, P., Carbon nanofibers for composite applications, Carbon, 42, 5, 1153-1158 (2004) · doi:10.1016/j.carbon.2003.12.043
[17] Hartl H (2002) Development of a continuum-mechanics-based tool for 3D finite element analysis of reinforced concrete structures and application to problems of soil-structure interaction. Doctoral thesis, Graz University of Technology, Austria
[18] Kari, S.; Berger, H.; Gabbert, U., Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites, Comput Mater Sci, 39, 1, 198-204 (2007) · doi:10.1016/j.commatsci.2006.02.024
[19] Lee, Y.; Lee, S.; Youn, J.; Chung, K.; Kang, T., Characterization of fiber orientation in short fiber reinforced composites with an image processing technique, Mater Res Innov, 6, 2, 65-72 (2002) · doi:10.1007/s10019-002-0180-8
[20] Lusti, HR; Gusev, AA, Finite element predictions for the thermoelastic properties of nanotube reinforced polymers, Model Simul Mater Sci Eng, 12, 3, S107 (2004) · doi:10.1088/0965-0393/12/3/S05
[21] Melenk, JM, On condition numbers in hp-FEM with Gauss-Lobatto-based shape functions, J Comput Appl Math, 139, 1, 21-48 (2002) · Zbl 0997.65128 · doi:10.1016/S0377-0427(01)00391-0
[22] Mortazavi, B.; Baniassadi, M.; Bardon, J.; Ahzi, S., Modeling of two-phase random composite materials by finite element, Mori-Tanaka and strong contrast methods, Compos Part B Eng, 45, 1, 1117-1125 (2013) · doi:10.1016/j.compositesb.2012.05.015
[23] Mortazavi, B.; Bardon, J.; Ahzi, S., Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study, Comput Mater Sci, 69, 100-106 (2013) · doi:10.1016/j.commatsci.2012.11.035
[24] Ninić, J.; Stascheit, J.; Meschke, G., Beam-solid contact formulation for finite element analysis of pile-soil interaction with arbitrary discretization, Int J Numer Anal Methods Geomech, 38, 14, 1453-1476 (2014) · doi:10.1002/nag.2262
[25] Pelletier, V.; Gal, N.; Fournier, P.; Kilfoil, ML, Microrheology of microtubule solutions and actin-microtubule composite networks, Phys Rev Lett, 102, 18, 188303 (2009) · doi:10.1103/PhysRevLett.102.188303
[26] Qi, L.; Tian, W.; Zhou, J., Numerical evaluation of effective elastic properties of composites reinforced by spatially randomly distributed short fibers with certain aspect ratio, Compos Struct, 131, 843-851 (2015) · doi:10.1016/j.compstruct.2015.06.045
[27] Rasheed MIA (2016) Compression molding of chopped woven thermoplastic composite flakes. Doctoral thesis, University of Twente, Enschede, The Netherlands
[28] Saad, Yousef, Iterative methods for sparse linear systems (2003), Philadelphia: SIAM, Philadelphia · Zbl 1031.65046 · doi:10.1137/1.9780898718003
[29] Sadek, Machhour; Shahrour, Isam, A three dimensional embedded beam element for reinforced geomaterials, Int J Numer Anal Methods Geomech, 28, 9, 931-946 (2004) · Zbl 1075.74674 · doi:10.1002/nag.357
[30] Sheng, N.; Boyce, MC; Parks, DM; Rutledge, GC; Abes, JI; Cohen, RE, Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle, Polymer, 45, 2, 487-506 (2004) · doi:10.1016/j.polymer.2003.10.100
[31] Tan, H.; Huang, Y.; Liu, C.; Geubelle, PH, The Mori-Tanaka method for composite materials with nonlinear interface debonding, Int J Plast, 21, 10, 1890-1918 (2005) · Zbl 1154.74318 · doi:10.1016/j.ijplas.2004.10.001
[32] ten Thije, RHW; Akkerman, R., Solutions to intra-ply shear locking in finite element analyses of fibre reinforced materials, Compos Part A Appl Sci Manuf, 39, 7, 1167-1176 (2008) · doi:10.1016/j.compositesa.2008.03.014
[33] Vejchodskỳ, T.; Šolín, P., Static condensation, partial orthogonalization of basis functions, and ILU preconditioning in the hp-FEM, J Comput Appl Math, 218, 1, 192-200 (2008) · Zbl 1145.65101 · doi:10.1016/j.cam.2007.04.044
[34] Wilson, EL, The static condensation algorithm, Int J Numer Methods Eng, 8, 1, 198-203 (1974) · doi:10.1002/nme.1620080115
[35] Xia, Z.; Zhang, Y.; Ellyin, F., A unified periodical boundary conditions for representative volume elements of composites and applications, Int J Solids Struct, 40, 8, 1907-1921 (2003) · Zbl 1048.74011 · doi:10.1016/S0020-7683(03)00024-6
[36] Zienkiewicz, OC; Taylor, RL; Zhu, JZ, The finite element method: its basis and fundamentals (2005), Amsterdam: Elsevier, Amsterdam · Zbl 1307.74005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.