×

Bi-level programming for Stackelberg game with intuitionistic fuzzy number: a ranking approach. (English) Zbl 1474.90280

Summary: This paper introduces a ranking function procedure on a bi-level programming for Stackelberg game involving intuitionistic fuzzy parameters. Intuitionistic fuzzy number is considered in many real-life situations, so it makes perfect sense to address decision-making problem by using some specified intuitionistic fuzzy numbers. In this paper, intuitionistic fuzziness is characterized by a normal generalized triangular intuitionistic fuzzy number. A defuzzification method is introduced based on the proportional probability density function associated with the corresponding membership function, as well as the complement of non-membership function. Using the proposed ranking technique, a methodology is presented for solving bi-level programming for Stackelberg game. An application example is provided to demonstrate the applicability of the proposed methodology, and the achieved results are compared with the existing methods.

MSC:

90C05 Linear programming
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
90C30 Nonlinear programming
91A12 Cooperative games
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Von, H., The Theory of the Market Economic (1952), New York: Oxford University Press, New York
[2] Kiyota, S.; Aiyishi, E., A new computational method for Stackelberg and min-max problem use of a penalty method, IEEE Trans. Autom. Control, 26, 2, 460-466 (1981) · Zbl 0472.93004 · doi:10.1109/TAC.1981.1102607
[3] Maiti, SK; Roy, SK, Multi-choice stochastic bi-level programming problem in co-operative nature via fuzzy programming approach, J. Ind. Eng. Int., 12, 3, 287-298 (2016) · doi:10.1007/s40092-016-0153-y
[4] Roy, SK; Maiti, SK, Stochastic bi level programming with multi-choice for Stackelberg game via fuzzy programming, Int. J. Oper. Res., 29, 4, 508-530 (2017) · doi:10.1504/IJOR.2017.085097
[5] Zhang, G.; Lu, J.; Dillon, T., Decentralized multi-objective bi-level decision making with fuzzy demand, Knowl. Based Syst., 20, 5, 495-507 (2007) · doi:10.1016/j.knosys.2007.01.003
[6] Lachhwani, K.; Poonia, MP, Mathematical solution of multi-level fractional programming problem with fuzzy goal programming approach, J. Ind. Eng. Int., 8, 16, 1-11 (2012)
[7] Shih, HS; Lee, ES, Compensatory fuzzy multiple level decision making, Fuzzy Sets Syst., 114, 1, 71-87 (2000) · Zbl 0963.91029 · doi:10.1016/S0165-0114(98)00409-6
[8] Sinha, S., Fuzzy programming approach to multi-level programming problems, Fuzzy Sets Syst., 136, 2, 189-202 (2003) · Zbl 1013.90143 · doi:10.1016/S0165-0114(02)00362-7
[9] Roy, SK, Fuzzy programming techniques for Stackelberg game, Tamsui Oxford J. Manag. Sci., 22, 3, 43-56 (2006) · Zbl 1278.90491
[10] Mahapatra, DR; Roy, SK; Biswal, MP, Multi-choice stochastic transportation problem involving extreme value distribution, Appl. Math. Model., 37, 4, 2230-2240 (2013) · Zbl 1349.90626 · doi:10.1016/j.apm.2012.04.024
[11] Roy, SK, Multi-choice stochastic transportation problem involving Weibull distribution, Int. J. Oper. Res., 21, 1, 38-58 (2014) · Zbl 1308.90102 · doi:10.1504/IJOR.2014.064021
[12] Maity, G.; Roy, SK, Solving a multi-objective transportation problem with non-linear cost and multi-choice demand, Int. J. Manag. Sci. Eng. Manag., 11, 1, 62-70 (2015)
[13] Roy, SK, Transportation problem with multi-choice cost and demand and stochastic supply, J. Oper. Res. Soc. China, 4, 2, 193-204 (2016) · Zbl 1342.90026 · doi:10.1007/s40305-016-0125-3
[14] Roy, SK; Maity, G.; Weber, GW; Gök, SZA, Conic scalarization approach to solve multi-choice multi-objective transportation problem with interval goal, Ann. Oper. Res., 253, 1, 599-620 (2017) · Zbl 1406.90077 · doi:10.1007/s10479-016-2283-4
[15] Roy, SK, Lagrange’s interpolation polynomial approach to solve multi-choice transportation problem, Int. J. Appl. Comput. Math., 1, 4, 639-649 (2015) · Zbl 1421.90026 · doi:10.1007/s40819-015-0041-y
[16] Sakawa, M.; Nishizaki, I.; Uemura, Y., Interactive fuzzy programming for multi-level linear programming problems with fuzzy parameters, Fuzzy Sets Syst., 109, 1, 03-19 (2000) · Zbl 0956.90063 · doi:10.1016/S0165-0114(98)00130-4
[17] Atanassov, KT, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20, 1, 87-96 (1986) · Zbl 0631.03040 · doi:10.1016/S0165-0114(86)80034-3
[18] Bhaumik, A.; Roy, SK; Li, DF, Analysis of triangular intuitionistic fuzzy matrix games using robust ranking, J. Intell. Fuzzy Syst., 33, 1, 327-336 (2017) · Zbl 1376.91015 · doi:10.3233/JIFS-161631
[19] Li, DF, Multiattribute decision making models and methods using intuitionistic fuzzy sets, J. Comput. Syst. Sci., 70, 1, 73-85 (2005) · Zbl 1066.90052 · doi:10.1016/j.jcss.2004.06.002
[20] Roy, SK; Ebrahimnejad, A.; Verdegay, JL; Das, S., New approach for solving intuitionistic fuzzy multi-objective transportation problem, Sadhana, 43, 1, 3 (2018) · Zbl 1391.90083 · doi:10.1007/s12046-017-0777-7
[21] Hassan, MN, A new ranking method for intuitionistic fuzzy numbers, Int. J. Fuzzy Syst., 12, 1, 80-86 (2010)
[22] Parvathi, R.; Malathi, C., Intuitionistic fuzzy linear optimization, Notes Intuit. Fuzzy Set, 18, 1, 48-56 (2012) · Zbl 1263.90134
[23] Varghese, A.; Kuriakose, S., Centroid of an intuitionistic fuzzy number, Notes Intuit. Fuzzy Sets, 18, 1, 19-24 (2012) · Zbl 1263.03047
[24] Wan, SP; Wang, QY; Dong, JY, The extended VIKOR method for multiattribute group decision making with triangular intuitionistic fuzzy numbers, Knowl. Based Syst., 52, 3, 65-77 (2013) · doi:10.1016/j.knosys.2013.06.019
[25] Debnath, L., Integral Transforms and Their Applications (1965), New York: CRC Press, New York · Zbl 0920.44001
[26] Zadeh, LA, Fuzzy sets, Inf. Control, 8, 2, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[27] Mitchel, HB, Ranking intuitionistic fuzzy numbers, Int. J. Uncertain. Fuzziness Knowl. Based Syst., 12, 3, 377-386 (2004) · Zbl 1046.62018 · doi:10.1142/S0218488504002886
[28] Nishad, AK; Singh, SR, Linear programming problem with intuitionistic fuzzy number, Int. J. Comput. Appl., 106, 8, 22-28 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.