×

Strain-mediated propagation of magnetic domain-walls in cubic magnetostrictive materials. (English) Zbl 1478.35197

Summary: The role played by magnetoelastic effects on the properties exhibited by magnetic domain walls propagating along the major axis of a thin magnetostrictive nanostrip, coupled mechanically with a thick piezoelectric actuator, is theoretically investigated. The magnetostrictive layer is assumed to be a linear elastic material belonging to the cubic crystal classes \(\bar{4}3\)m, 432 and m\(\bar{3}\)m and to undergo isochoric magnetostrictive deformations. The analysis is carried out in the framework of the extended Landau-Lifshitz-Gilbert equation, which allows to describe, at the mesoscale, the spatio-temporal evolution of the local magnetization vector driven by magnetic fields and electric currents, in the presence of magnetoelastic and magnetocrystalline anisotropy fields. Through the traveling-wave transformation, the explicit expression of the key features involved in both steady and precessional regimes is provided and a qualitative comparison with data from the literature is also presented.

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
35Q74 PDEs in connection with mechanics of deformable solids
35C07 Traveling wave solutions
74F15 Electromagnetic effects in solid mechanics
74E15 Crystalline structure
82D40 Statistical mechanics of magnetic materials
82D80 Statistical mechanics of nanostructures and nanoparticles
78A25 Electromagnetic theory (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Eerenstein, W., Multiferroic and magnetoelectric materials, Nature, 442, 759-765 (2006) · doi:10.1038/nature05023
[2] Vaz, CAF, Magnetoelectric coupling effects in multiferroic complex oxide, Adv. Mater., 22, 2900-2918 (2010) · doi:10.1002/adma.200904326
[3] Balinskiy, M., Magnetoelectric spin wave modulator based on synthetic multiferroic structure, Sci. Rep., 8, 10867 (2018) · doi:10.1038/s41598-018-28878-w
[4] Lei, N., Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures, Nat. Commun., 4, 1378 (2013) · doi:10.1038/ncomms2386
[5] De Ranieri, E., Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques, Nat. Mater., 12, 808-814 (2013) · doi:10.1038/nmat3657
[6] Shepley, PM, Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain, Sci. Rep., 5, 7921 (2015) · doi:10.1038/srep07921
[7] Hu, JM, Fast magnetic domain-wall motion in a ring-shaped nanowire driven by a voltage, Nano Lett., 16, 2341-2348 (2016) · doi:10.1021/acs.nanolett.5b05046
[8] Hubert, A.; Schäfer, R., Magnetic Domains:The Analysis of Magnetic Microstructures (2008), Berlin: Springer, Berlin
[9] Chikazumi, S.; Graham, CD, Physics of Ferromagnetism (2009), Oxford: Oxford University Press, Oxford
[10] Cullity, BD; Graham, CD, Introduction to Magnetic Materials (2009), New York: Wiley, New York
[11] Landau, LD; Lifshitz, EM, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjetunion, 8, 153-169 (1935) · Zbl 0012.28501
[12] Gilbert, TL, A Lagrangian formulation of the gyromagnetic equation of the magnetization field, Phys. Rev., 100, 1243 (1955)
[13] Berger, L., Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B, 54, 9353-9358 (1996) · doi:10.1103/PhysRevB.54.9353
[14] Zhang, S.; Li, Z., Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets, Phys. Rev. Lett., 93, 127204 (2004) · doi:10.1103/PhysRevLett.93.127204
[15] Thiaville, A., Micromagnetic understanding of current-driven domain wall motion in patterned nanowires, Europhys. Lett., 69, 990-996 (2005) · doi:10.1209/epl/i2004-10452-6
[16] Tiberkevich, V.; Slavin, A., Nonlinear phenomenological model of magnetic dissipation for large precession angles: generalization of the Gilbert model, Phys. Rev. B, 75, 014440 (2007) · doi:10.1103/PhysRevB.75.014440
[17] Consolo, G., Onset of linear instability driven by electric currents in magnetic systems: a Lagrangian approach, Ric. Mat., 65, 413-422 (2016) · Zbl 1404.70064 · doi:10.1007/s11587-016-0264-1
[18] Consolo, G., Modeling magnetic domain-wall evolution in trilayers with structural inversion asymmetry, Ric. Mat., 67, 1001-1015 (2018) · Zbl 1405.35213 · doi:10.1007/s11587-018-0374-z
[19] Schryer, NL; Walker, LR, The motion of \(180 \deg\) domain walls in uniform dc magnetic fields, J. Appl. Phys., 45, 5406-5421 (1974) · doi:10.1063/1.1663252
[20] Consolo, G.; Currò, C.; Martinez, E.; Valenti, G., Mathematical modeling and numerical simulation of domain wall motion in magnetic nanostrips with crystallographic defects, Appl. Math. Model., 36, 4876-4886 (2012) · Zbl 1252.74003 · doi:10.1016/j.apm.2011.12.024
[21] Consolo, G.; Valenti, G., Traveling wave solutions of the one-dimensional extended Landau-Lifshitz-Gilbert equation with nonlinear dry and viscous dissipations, Acta Appl. Math., 122, 141-152 (2012) · Zbl 1263.78003
[22] Consolo, G.; Valenti, G., Analytical solution of the strain-controlled magnetic domain wall motion in bilayer piezoelectric/magnetostrictive nanostructures, J. Appl. Phys., 121, 043903 (2017) · doi:10.1063/1.4974534
[23] Shu, YC; Lin, MP; Wu, KC, Micromagnetic modeling of magnetostrictive materials under intrinsic stress, Mech. Mater., 36, 975-997 (2004) · doi:10.1016/j.mechmat.2003.04.004
[24] Baňas, L., A numerical method for the Landau-Lifshitz equation with magnetostriction, Math. Methods Appl. Sci., 28, 1939-1954 (2005) · Zbl 1081.82027 · doi:10.1002/mma.651
[25] Liang, CY, Modeling of magnetoelastic nanostructures with a fully coupled mechanical-micromagnetic model, Nanotechnology, 25, 435701 (2014) · doi:10.1088/0957-4484/25/43/435701
[26] Consolo, G.; Curro, C.; Valenti, G., Curved domain walls dynamics driven by magnetic field and electric current in hard ferromagnets, Appl. Math. Model., 38, 1001-1010 (2014) · Zbl 1449.74088 · doi:10.1016/j.apm.2013.07.032
[27] Consolo, G., Federico, S., Valenti, G.: Magnetostriction in transversely isotropic hexagonal crystals. Phys. Rev. B 101, 014405 (2020)
[28] Federico, S.; Consolo, G.; Valenti, G., Tensor representation of magnetostriction for all crystal classes, Math. Mech. Solids, 24, 2814-2843 (2019) · Zbl 07273341 · doi:10.1177/1081286518810741
[29] Zhang, JX; Chen, LQ, Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials, Acta Mater., 53, 2845-2855 (2005) · doi:10.1016/j.actamat.2005.03.002
[30] Mballa-Mballa, FS, Micromagnetic modeling of magneto-mechanical behavior, IEEE Trans. Magn., 50, 1-4 (2014) · doi:10.1109/TMAG.2013.2288911
[31] Baltensperger, W.; Helman, JS, A model that gives rise to effective dry friction in micromagnetics, J. Appl. Phys., 73, 6516-6518 (1993) · doi:10.1063/1.352599
[32] Metaxas, PJ, Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy, Phys. Rev. Lett., 99, 217208 (2007) · doi:10.1103/PhysRevLett.99.217208
[33] Clark, AE, Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys, J. Appl. Phys., 93, 8621-8623 (2003) · doi:10.1063/1.1540130
[34] Wuttig, M.; Dai, L.; Cullen, JR, Elasticity and magnetoelasticity of Fe-Ga solid solutions, Appl. Phys. Lett., 80, 1135-1137 (2002) · doi:10.1063/1.1450045
[35] Rafique, S., Magnetic anisotropy of FeGa alloys, J. Appl. Phys., 95, 6939-6941 (2004) · doi:10.1063/1.1676054
[36] Gopman, DB, Static and dynamic magnetic properties of sputtered Fe-Ga thin films, IEEE Trans. Magn., 53, 1-4 (2017) · doi:10.1109/TMAG.2017.2700404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.