×

To study existence of at least three weak solutions to a system of over-determined Fredholm fractional integro-differential equations. (English) Zbl 1470.45014

Summary: In this article, the weak solutions of a class of nonlinear system of fractional boundary value problems including integral equations is investigated. Each equation in the system is either a nonlinear fractional partial integro-differential equation containing a gradient of a nonlinear source term or a Fredholm integral equation of the second kind. It is proved that there exist at least three distinct weak solutions by applying the critical point theory and the variational structure. In order to achieve this purpose, we use the well-known theorem on the construction of the critical set of functionals with a weak compactness condition. Furthermore, our main result is demonstrated by an illustrative example to show its legitimacy and applicability.

MSC:

45K05 Integro-partial differential equations
45B05 Fredholm integral equations
45G15 Systems of nonlinear integral equations
26A33 Fractional derivatives and integrals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Guo, X., Existence of unique solution to switched fractional differential equations with \(p\)-Laplacian operator, Turk J Math, 39, 864-871 (2015) · Zbl 1348.34014
[2] Oldham, K.; Spanier, J., The fractional calculus theory and applications of differentiation and integration to arbitrary order, 111 (1974), Elsevier · Zbl 0292.26011
[3] Podlubny, I., Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 198 (1998), Academic press · Zbl 0922.45001
[4] Uchaikin, V. V., Fractional derivatives for physicists and engineers (2013), Springer · Zbl 1312.26002
[5] Metzler, R.; Klafter, J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J Phys A, 37, R161 (2004) · Zbl 1075.82018
[6] Bagley, R. L.; Torvik, P., A theoretical basis for the application of fractional calculus to viscoelasticity, J Rheol, 27, 201-210 (1983) · Zbl 0515.76012
[7] Foukrach, D.; Moussaoui, T.; Ntouyas, S. K., Existence and uniqueness results for a class of BVPSfor nonlinear fractional differential equations, Georg Math J, 22, 1, 45-55 (2015) · Zbl 1317.34009
[8] Machado, J. T.; Kiryakova, V.; Mainardi, F., Recent history of fractional calculus, Commun Nonlinear Sci Numer Simul, 16, 1140-1153 (2011) · Zbl 1221.26002
[9] Balachandran, K.; Dauer, J.; Balasubramaniam, P., Controllability of semilinear integrodi erential systems in banach spaces, J Math Syst Estim Control, 6, 1-10 (1996)
[10] Balachandran, K.; Trujillo, J. J., The nonlocal cauchy problem for nonlinear fractional integrodifferential equations in banach spaces, Nonlinear Anal, 72, 4587-4593 (2010) · Zbl 1196.34007
[11] Zhang, L.; Ahmad, B.; Wang, G.; Agarwal, R. P.; Al-Yami, M.; Shammakh, W., Nonlocal integrodifferential boundary value problem for nonlinear fractional differential equations on an unbounded domain, Abstract and applied analysis, 2013 (2013), Hindawi Publishing Corporation · Zbl 1470.34035
[12] Rahimkhani, P.; Ordokhani, Y.; Babolian, E., Fractional-order bernoulli functions and their applications in solving fractional Fredholem-Volterra integro-differential equations, Appl Numer Math, 122, 66-81 (2017) · Zbl 1375.65175
[13] Pashayi, S.; Hashemi, M.; Shahmorad, S., Analytical lie group approach for solving fractional integro-differential equations, Commun Nonlinear Sci Numer Simul, 51, 66-77 (2017) · Zbl 1471.45006
[14] Kamrani, M., Convergence of Galerkin method for the solution of stochastic fractional integro differential equations, Opt-Int J Light Electron Opt, 127, 10049-10057 (2016)
[15] Baleanu, D.; Darzi, R.; Agheli, B., New study of weakly singular kernel fractional fourth-order partial integro-differential equations based on the optimum q-homotopic analysis method, J Comput Appl Math, 320, 193-201 (2017) · Zbl 1415.65280
[16] Ma, X.; Huang, C., Spectral collocation method for linear fractional integro-differential equations, Appl Math Model, 38, 1434-1448 (2014) · Zbl 1427.65421
[17] Agarwal, R. P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl Math, 109, 973-1033 (2010) · Zbl 1198.26004
[18] Benchohra, M.; Hamani, S.; Ntouyas, S., Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal, 71, 2391-2396 (2009) · Zbl 1198.26007
[19] Zhang, S., Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Comput Math Appl, 59, 1300-1309 (2010) · Zbl 1189.34050
[20] Kong, L., Homoclinic solutions for a higher order difference equation with p-Laplacian, Indagationes Math, 27, 124-146 (2016) · Zbl 1331.39004
[21] Heydari, M.; Dastjerdi, H. L.; Ahmadabadi, M. N., An efficient method for the numerical solution of a class of nonlinear fractional Fredholm integro-differential equations, Int J Nonlinear Sci Numer Simul, 19, 2-3, 165-173 (2018) · Zbl 1401.65086
[22] Nieto, J. J.; O’Regan, D., Variational approach to impulsive differential equations, Nonlinear Anal, 10, 680-690 (2009) · Zbl 1167.34318
[23] Li, F.; Liang, Z.; Zhang, Q., Existence of solutions to a class of nonlinear second order two-point boundary value problems, JMathAnalAppl, 312, 357-373 (2005) · Zbl 1088.34012
[24] Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations (1986), American Mathematical Soc. · Zbl 0609.58002
[25] Mawhin, J., Critical point theory and Hamiltonian systems (1989), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0676.58017
[26] Corvellec, J.-N.; Motreanu, V.; Saccon, C., Doubly resonant semilinear elliptic problems via nonsmooth critical point theory, J Differ Equ, 248, 2064-2091 (2010) · Zbl 1187.35083
[27] Tang, C.-L.; Wu, X.-P., Some critical point theorems and their applications to periodic solution for second order hamiltonian systems, J Differ Equ, 248, 660-692 (2010) · Zbl 1191.34053
[28] Chu, J.; Heidarkhani, S.; Salari, A.; Caristi, G., Weak solutions and energy estimates for singular p-Laplacian-type equations, J Dyn Control Syst, 1-13 (2017)
[29] Su, Y.-H.; Feng, Z., Variational approach for ap-Laplacian boundary value problem on time scales, Appl Anal, 97, 13, 2269-2287 (2018) · Zbl 1405.34079
[30] Sun, J.; Cheng, Y.-h.; Wu, T.-f.; Feng, Z., Positive solutions of a superlinear Kirchhoff type equation in rn \(( n \geq 4)\), Commun Nonlinear Sci Numer Simul, 71, 141-160 (2019) · Zbl 1464.35117
[31] Jiao, F.; Zhou, Y., Existence results for fractional boundary value problem via critical point theory, Int J Bifurc Chaos, 22, 1250086 (2012) · Zbl 1258.34015
[32] Abdolrazaghi, F.; Razani, A., On the weak solutions of an overdetermined system of nonlinear fractional partial integro-differential equations, Miskolc Math Notes, 20, 1, 3-16 (2019) · Zbl 1438.35421
[33] Afrouzi, G. A.; Hadjian, A., A variational approach for boundary value problems for impulsive fractional differential equations, Fract Calculus Appl Anal, 21, 6, 1565-1584 (2018) · Zbl 1426.34004
[34] Zhao, Y.; Chen, H.; Qin, B., Multiple solutions for a coupled system of nonlinear fractional differential equations via variational methods, Appl Math Comput, 257, 417-427 (2015) · Zbl 1338.34033
[35] Bai, C., Infinitely many solutions for a perturbed nonlinear fractional boundary-value problem, ElectronJ Differ Equ, 2013, 1-12 (2013) · Zbl 1295.34007
[36] Heidarkhani, S.; Zhao, Y.; Caristi, G.; Afrouzi, G. A.; Moradi, S., Infinitely many solutions for perturbed impulsive fractional differential systems, Appl Anal, 96, 1401-1424 (2017) · Zbl 1367.34007
[37] Heidarkhani, S.; Afrouzi, G. A.; Moradi, S.; Caristi, G., Existence of multiple solutions for a perturbed discrete anisotropic equation, J Differ Equ Appl, 1-17 (2017)
[38] Li, Y.-N.; Sun, H.-R.; Zhang, Q.-G., Existence of solutions to fractional boundary-value problems with a parameter, Electronic J Differ Equ, 2013, 1-12 (2013) · Zbl 1294.34006
[39] Sun, H.-R.; Zhang, Q.-G., Existence of solutions for a fractional boundary value problem via the mountain pass method and an iterative technique, Comput Math Appl, 64, 3436-3443 (2012) · Zbl 1268.34027
[40] Chen, J.; Tang, X., Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory, Abstract and applied analysis, 2012 (2012), Hindawi Publishing Corporation · Zbl 1235.34011
[41] Xie, W.; Xiao, J.; Luo, Z., Existence of solutions for fractional boundary value problem with nonlinear derivative dependence, Abstract and applied analysis, 2014 (2014), Hindawi Publishing Corporation · Zbl 1474.34059
[42] Ghalambaz, M.; Ghalambaz, M.; Edalatifar, M., A new analytic solution for buckling of doubly clamped nano-actuators with integro differential governing equation using duan-rach adomian decomposition method, Appl Math Model, 40, 15, 7293-7302 (2016) · Zbl 1471.74018
[43] Ansari, R.; Gholami, R.; Shojaei, M. F.; Mohammadi, V.; Sahmani, S., Surface stress effect on the pull-in instability of circular nanoplates, Acta Astron, 102, 140-150 (2014)
[44] Yazdanpanahi, E.; Noghrehabadi, A.; Ghalambaz, M., Pull-in instability of electrostatic doubly clamped nano actuators: introduction of a balanced liquid layer (bll), Int J Non-Linear Mech, 58, 128-138 (2014)
[45] Soroush, R.; Koochi, A.; Kazemi, A. S.; Abadyan, M., Modeling the effect of Van der Waals attraction on the instability of electrostatic cantilever and doubly-supported nano-beams using modified adomian method, Int J Struct StabDyn, 12, 05, 1250036 (2012) · Zbl 1359.74028
[46] Koochi, A.; Kazemi, A. S.; Beni, Y. T.; Yekrangi, A.; Abadyan, M., Theoretical study of the effect of casimir attraction on the pull-in behavior of beam-type nems using modified adomian method, Physica E, 43, 2, 625-632 (2010)
[47] Abbasnejad, B.; Rezazadeh, G.; Shabani, R., Stability analysis of a capacitive FGM micro-beam using modified couple stress theory, Acta Mech Solida Sin, 26, 4, 427-440 (2013)
[48] Abdel-Rahman, E. M.; Younis, M. I.; Nayfeh, A. H., Characterization of the mechanical behavior of an electrically actuated microbeam, J Micromech Microeng, 12, 6, 759 (2002)
[49] Choi, B.; Lovell, E., Improved analysis of microbeams under mechanical and electrostatic loads, J Micromech Microeng, 7, 1, 24 (1997)
[50] Noghrehabadi, A.; Ghalambaz, M.; Vosough, A., A hybrid power series-cuckoo search optimization algorithm to electrostatic deflection of micro fixed-fixed actuators, Int J Multidiscip Sci Eng, 2, 4, 22-26 (2011)
[51] Ghalambaz, M.; Noghrehabadi, A.; Vosoogh, A., A hybrid power series- artificial bee colony algorithm to solve electrostatic pull-in instability and deflection of nano cantilever actuators considering casimir attractions, Int Rev Mech Eng, 5, 4, 586-593 (2011)
[52] Noghrehabadi, A.; Ghalambaz, M.; Beni, Y. T.; Abadyan, M.; Abadi, M. N.; Abadi, M. N., A new solution on the buckling and stable length of multi wall carbon nanotube probes near graphite sheets, Procedia Eng, 10, 3725-3733 (2011)
[53] Ghalambaz, M.; Noghrehabadi, A.; Abadyan, M.; Beni, Y. T.; Abadi, A. R.N.; Abadi, M. N., A new power series solution on the electrostatic pull-in instability of nano cantilever actuators, Procedia Eng, 10, 3708-3716 (2011)
[54] Shivanian, E.; Ansari, M., Buckling of doubly clamped nano-actuators in general form through optimized Chebyshev polynomials with interior point algorithm, Acta Phys Pol A, 135, 3 (2019)
[55] Kilbas, A.; Srivastava, H.; Trujillo, J., Theory and applications of fractional differential equations (2006), Elsevier Science: Elsevier Science Amsterdam · Zbl 1092.45003
[56] Heidarkhani, S.; Zhou, Y.; Caristi, G.; Afrouzi, G. A.; Moradi, S., Existence results for fractional differential systems through a local minimization principle, Comput Math Appl (2016)
[57] Bonanno, G.; Marano, S. A., On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl Anal, 89, 1-10 (2010) · Zbl 1194.58008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.