×

A coupled SPH-FVM method for simulating incompressible interfacial flows with large density difference. (English) Zbl 1521.76719

Summary: The coupling of smoothed particle hydrodynamics (SPH) with the finite volume method (FVM) is presented for simulation of incompressible interfacial flows with large density difference. The flow phase with small volume ratio is expressed by SPH particles and the other phase is defined on the stationary FVM grids. In the present SPH-FVM coupling algorithm, the dynamic interface is tracked by the movement and distribution of SPH particles. The flow field is solved by FVM grids. The coupling framework is established through a smooth transition between the SPH particles and the FVM grids in the overlapping regions. The continuum surface force model is brought into the coupling algorithm to evaluate the effect of surface tension. A mixed pressure Poisson equation (PPE) source term is taken to ensure the incompressibility of the fluid represented by the SPH particles. The moving interfaces can be reproduced accurately and conveniently by the SPH-FVM coupling algorithm. Several benchmark numerical problems of incompressible interfacial flows with large density difference are investigated to demonstrate the accuracy and applicability of the SPH-FVM coupling method.

MSC:

76M28 Particle methods and lattice-gas methods
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

Matlab; OpenFOAM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yang, Q.; Xu, F.; Yang, Y.; Wang, L., A multi-phase SPH model based on Riemann solvers for simulation of jet breakup, Eng Anal Bound Elem, 111, 134-147 (2020) · Zbl 1464.76162
[2] Hua, J.; Mortensen, D., A front tracking method for simulation of two-phase interfacial flows on adaptive unstructured meshes for complex geometries, Int J Multiph Flow, 119, 166-179 (2019)
[3] Krimi, A.; Rezoug, M.; Khelladi, S.; Nogueira, X.; Deligant, M.; Ramírez, L., Smoothed Particle Hydrodynamics: a consistent model for interfacial multiphase fluid flow simulations, J Comput Phys, 358, 53-87 (2018) · Zbl 1381.76287
[4] Sun, PN; Le Touzé, D.; Zhang, AM, Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR, Eng Anal Bound Elem, 104, 240-258 (2019) · Zbl 1464.76160
[5] Paulo, GS; Tomé, MF; McKee, S., A marker-and-cell approach to viscoelastic free surface flows using the PTT model, J Nonnewton Fluid Mech, 147, 149-174 (2007) · Zbl 1273.76300
[6] Harlow, FH; Welch, JE., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys Fluids, 80, 2185-2199 (1965)
[7] Hirt, CW; Nichols, BD., Volume of fluid (VOF) method for the dynamics of free boundaries, J Comput Phys, 32, 1039-1048 (1981)
[8] Caboussat, A., Numerical simulation of two-phase free surface flows, Arch Comput Methods Eng, 12, 165-224 (2005) · Zbl 1097.76047
[9] McKee, S.; Tomé, MF; Cuminato, JA; Castelo, A.; Ferreira, VG., Recent advances in the marker and cell method, Arch Comput Methods Eng, 11, 107-142 (2004) · Zbl 1172.76300
[10] Tomé, MF; Doricio, JL; Castelo, A.; Cuminato, JA; McKee, S., Solving viscoelastic free surface flows of a second-order fluid using a marker-and-cell approach, Int J Numer Methods Fluids, 53, 599-627 (2007) · Zbl 1104.76068
[11] Santos, FLP; Ferreira, VG; Tomé, MF; Castelo, A.; Mangiavacchi, N.; McKee, S., A marker-and-cell approach to free surface 2-D multiphase flows, Int J Numer Methods Fluids, 70, 1543-1557 (2012) · Zbl 1412.76075
[12] Hidayathulla Khan, BM; Venkatadri, K.; Anwar Bég, O.; Ramachandra Prasad, V.; Mallikarjuna, B., Natural convection in a square cavity with uniformly heated and/or insulated walls using marker-and-cell method, Int J Appl Comput Math, 61 (2018) · Zbl 1457.76148
[13] Li, J.; Renardy, Y., Numerical study of flows of two immiscible liquids at low Reynolds number, SIAM Rev, 42, 417-439 (2000) · Zbl 0981.76062
[14] Zhang, W.; Tang, Y.; Zhao, C.; Zhang, C., A two-phase flow model with VOF for free surface flow problems, Appl Mech Mater, 232, 279-283 (2012)
[15] Yin, X.; Zarikos, I.; Karadimitriou, NK; Raoof, A.; Hassanizadeh, SM., Direct simulations of two-phase flow experiments of different geometry complexities using Volume-of-Fluid (VOF) method, Chem Eng Sci, 195, 820-827 (2019)
[16] Issakhov, A.; Zhandaulet, Y., Numerical simulation of dam break waves on movable beds for various forms of the obstacle by VOF method, Water Resour Manag, 34, 2269-2289 (2020)
[17] Han, W.; Chen, X., Numerical simulation of the droplet formation in a T-Junction microchannel by a level-set method, Aust J Chem, 71, 957-964 (2018)
[18] Helland, JO; Pedersen, J.; Friis, HA; Jettestuen, E., A multiphase level set approach to motion of disconnected fluid ganglia during capillary-dominated three-phase flow in porous media: Numerical validation and applications, Chem Eng Sci, 203, 138-162 (2019)
[19] Amani, A.; Balcázar, N.; Castro, J.; Oliva, A., Numerical study of droplet deformation in shear flow using a conservative level-set method, Chem Eng Sci, 207, 153-171 (2019)
[20] Shaikh, J.; Sharma, A.; Bhardwaj, R., On sharp-interface dual-grid level-set method for two-phase flow simulation, Numer Heat Transf Part B Fundam, 75, 67-91 (2019)
[21] An, RD; Yu, CH., A level set redistancing algorithm for simulation of two-phase flow, Numer Heat Transf Part B Fundam, 78, 30-53 (2020)
[22] Hoogerbrugge, PJ; Koelman, JMVA., Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, EPL, 19, 155-160 (1992)
[23] Meakin, P.; Xu, Z., Dissipative particle dynamics and other particle methods for multiphase fluid flow in fractured and porous media, Prog Comput Fluid Dyn, 9, 399-408 (2009)
[24] Gingold, RA; Monaghan, JJ., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon Not R Astron Soc, 3, 375-389 (1977) · Zbl 0421.76032
[25] Lucy, LB., A numerical approach to the testing of the fission hypothesis, Astron J, 8, 1013-1024 (1977)
[26] Monaghan, JJ; Kocharyan, A., SPH simulation of multi-phase flow, Comput Phys Commun, 87, 225-235 (1995) · Zbl 0923.76195
[27] Koshizuka, S.; Oka, Y., Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl Sci Eng, 123, 421-434 (1996)
[28] Sun, C.; Shen, Z.; Zhang, M., Surface treatment technique of MPS method for free surface flows, Eng Anal Bound Elem, 102, 60-72 (2019) · Zbl 1464.76159
[29] Guo, LC; Zhang, S.; Morita, K.; Fukuda, K., Fundamental validation of the finite volume particle method for 3D sloshing dynamics, Int J Numer Methods Fluids, 68, 1-17 (2012) · Zbl 1426.76373
[30] Zhang, S.; Motira, K.; Fukuda, K.; Shirakawa, N., A new algorithm for surface tension model in moving particle methods, Int J Numer Methods Fluids, 55, 225-240 (2007) · Zbl 1128.76049
[31] Xu, S.; Lou, Y.; He, P.; Wang, X.; Wang, J., Effect of solvent quality on Poiseuille flow of polymer solutions in microchannels: a dissipative particle dynamics study, J Appl Polym Sci, 136, 47345 (2019)
[32] Zhou, L.; Feng, S.; Liu, H.; Chang, J., Dissipative particle dynamics simulation of cell entry into a micro-channel, Eng Anal Bound Elem, 107, 47-52 (2019) · Zbl 1464.76002
[33] Patiño-Nariño, EA; Galvis, AF; Sollero, P.; Pavanello, R.; Moshkalev, SA., A consistent multiphase SPH approximation for bubble rising with moderate Reynolds numbers, Eng Anal Bound Elem, 105, 1-19 (2019) · Zbl 1464.76154
[34] Li, MK; Zhang, AM; Ming, FR; Sun, PN; Peng, YX., An axisymmetric multiphase SPH model for the simulation of rising bubble, Comput Methods Appl Mech Eng, 366, Article 113039 pp. (2020) · Zbl 1442.76085
[35] Tang, Y.; Chen, S.; Jiang, Q., A conservative SPH scheme using exact projection with semi-analytical boundary method for free-surface flows, Appl Math Model, 82, 607-635 (2020) · Zbl 1481.76114
[36] Koshizuka, S.; Tamako, H.; Oka, Y., A particle method for incompressible viscous flow with fluid fragmentation, Comput Fluid Dyn J, 4, 29-46 (1995)
[37] Duan, G.; Chen, B.; Koshizuka, S.; Xiang, H., Stable multiphase moving particle semi-implicit method for incompressible interfacial flow, Comput Methods Appl Mech Eng, 318, 636-666 (2017) · Zbl 1439.76027
[38] Guo, K.; Chen, R.; Qiu, S.; Tian, W.; Su, G., An improved Multiphase Moving Particle Semi-implicit method in bubble rising simulations with large density ratios, Nucl Eng Des, 340, 370-387 (2018)
[39] Garoosi, F.; Shakibaeinia, A., Numerical simulation of Rayleigh-Bénard convection and three-phase Rayleigh-Taylor instability using a modified MPS method, Eng Anal Bound Elem, 123, 1-35 (2021) · Zbl 1464.76136
[40] Wang, J.; Zhang, X., Improved moving particle semi-implicit method for multiphase flow with discontinuity, Comput Methods Appl Mech Eng, 346, 312-331 (2019) · Zbl 1440.76126
[41] Sterian, D.; Teleaga, D.; Zavalan, L., Finite volume particle method for incompressible flows, Appl Mech Mater, 656, 72-80 (2014)
[42] Liu, X.; Morita, K.; Zhang, S., Enhancement of the accuracy of the finite volume particle method for the simulation of incompressible flows, Int J Numer Methods Fluids, 85, 712-726 (2017)
[43] Quinlan, NJ., Extensions of the meshless finite volume particle method (FVPM) for static and dynamic free-surface flows, Comput Fluids, 177, 33-45 (2018) · Zbl 1410.76258
[44] Ishii, E.; Ishikawa, T.; Tanabe, Y., Hybrid particle/grid method for predicting motion of micro– and macrofree surfaces, J Fluids Eng Trans ASME, 128, 921-930 (2006)
[45] Ishii, E.; Ishikawa, M.; Sukegawa, Y.; Yamada, H., Secondary-drop-breakup simulation integrated with fuel-breakup simulation near injector outlet, J Fluids Eng Trans ASME, 133, Article 081302 pp. (2011)
[46] Liu, J.; Koshizuka, S.; Oka, Y., A hybrid particle-mesh method for viscous, incompressible, multiphase flows, J Comput Phys, 202, 65-93 (2005) · Zbl 1061.76069
[47] Ikejiri, S.; Liu, J.; Oka, Y., Simulation of a single bubble rising with hybrid particle-mesh method, J Nucl Sci Technol, 44, 886-893 (2007)
[48] Liu, X.; Guo, L.; Morita, K.; Zhang, S., Development of a hybrid particle-mesh method for two-phase flow simulations, Int J Numer Methods Fluids, 82, 334-347 (2016)
[49] Liu, X.; Morita, K.; Zhang, S., A conservative finite volume-particle hybrid method for simulation of incompressible interfacial flow, Comput Methods Appl Mech Eng, 355, 840-859 (2019) · Zbl 1441.76042
[50] Chen, FZ; Qiang, HF; Gao, WR., Simulation of aerolian sand transport with SPH-FVM coupled method, Wuli Xuebao/Acta Phys Sin, 63, Article 130202 pp. (2014)
[51] Chen, FZ; Qiang, HF; Gao, WR., Coupling of smoothed particle hydrodynamics and finite volume method for two-dimensional spouted beds, Comput Chem Eng, 77, 135-146 (2015)
[52] Kumar, P.; Yang, Q.; Jones, V.; McCue-Weil, L., Coupled SPH-FVM simulation within the OpenFOAM framework, Procedia IUTAM, 18, 76-84 (2015)
[53] Marrone, S.; Di Mascio, A.; Le Touzé, D., Coupling of smoothed particle hydrodynamics with finite volume method for free-surface flows, J Comput Phys, 310, 161-180 (2016) · Zbl 1349.76716
[54] Napoli, E.; De Marchis, M.; Gianguzzi, C.; Milici, B.; Monteleone, A., A coupled Finite Volume-Smoothed Particle Hydrodynamics method for incompressible flows, Comput Methods Appl Mech Eng, 310, 674-693 (2016) · Zbl 1439.76113
[55] Brackbill, JU; Kothe, DB; Zemach, C., A continuum method for modeling surface tension, J Comput Phys, 100, 335-354 (1992) · Zbl 0775.76110
[56] Gui, Q.; Shao, S.; Dong, P., Wave impact simulations by an improved ISPH model, J Waterw Port Coast Ocean Eng, 140, 1-14 (2014)
[57] Gui, Q.; Dong, P.; Shao, S., Numerical study of PPE source term errors in the incompressible SPH models, Int J Numer Methods Fluids, 77, 358-379 (2015)
[58] Zainali, A.; Tofighi, N.; Shadloo, MS; Yildiz, M., Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method, Comput Methods Appl Mech Eng, 254, 99-113 (2013) · Zbl 1297.76137
[59] Rezavand, M.; Taeibi-Rahni, M.; Rauch, W., An ISPH scheme for numerical simulation of multiphase flows with complex interfaces and high density ratios, Comput Math with Appl, 75, 2658-2677 (2018) · Zbl 1415.76511
[60] Chen, JK; Beraun, JE; Jih, CJ., Completeness of corrective smoothed particle method for linear elastodynamics, Comput Mech, 24, 273-285 (1999) · Zbl 0967.74078
[61] Chen, Z.; Zong, Z.; Liu, MB; Zou, L.; Li, HT; Shu, C., An SPH model for multiphase flows with complex interfaces and large density differences, J Comput Phys, 283, 169-188 (2015) · Zbl 1351.76231
[62] Liu, S.; Nistor, I.; Mohammadian, M., Evaluation of the solid boundary treatment methods in SPH, Int J Ocean Coast Eng, 01, Article 1840002 pp. (2018)
[63] Tang, WH; Mao, YM., A method of processing rigid boundary condition in SPH simulation, J Chem Inf Model, 23, 54-57 (2019), (in chinese)
[64] Moukalled F, Mangani L, Darwish M. The finite volume method in computational fluid dynamics : An Advanced Introduction with OpenFOAM and Matlab. vol. 113. 2016. · Zbl 1329.76001
[65] Huang, C.; Lei, JM; Liu, MB; Peng, XY., An improved KGF-SPH with a novel discrete scheme of Laplacian operator for viscous incompressible fluid flows, Int J Numer Methods Fluids, 81, 377-396 (2016)
[66] Monaghan, JJ., SPH without a tensile instability, J Comput Phys, 159, 290-311 (2000) · Zbl 0980.76065
[67] Koh, CG; Gao, M.; Luo, C., A new particle method for simulation of incompressible free surface flow problems, Int J Numer Methods Eng, 89, 1582-1604 (2012) · Zbl 1242.76272
[68] Shimizu, Y.; Gotoh, H.; Khayyer, A., An MPS-based particle method for simulation of multiphase flows characterized by high density ratios by incorporation of space potential particle concept, Comput Math with Appl, 76, 1108-1129 (2018) · Zbl 1427.76192
[69] Meng, ZF; Wang, P.; Zhang, AM; Ming, FR; Sun, PN., A multiphase SPH model based on Roe’s approximate Riemann solver for hydraulic flows with complex interface, Comput Methods Appl Mech Eng, 365, Article 112999 pp. (2020) · Zbl 1442.76087
[70] Hu, XY; Adams, NA., An incompressible multi-phase SPH method, J Comput Phys, 227, 264-278 (2007) · Zbl 1126.76045
[71] Cummins, SJ; Rudman, M., An SPH projection method, J Comput Phys, 152, 584-607 (1999) · Zbl 0954.76074
[72] Monaghan, JJ; Rafiee, A., A simple SPH algorithm for multi-fluid flow with high density ratios, Int J Numer Methods Fluids, 71, 537-561 (2013) · Zbl 1430.76400
[73] Layzer, D., On the instability of superposed fluids in a gravitational field, Astrophys J, 122, 1-12 (1955)
[74] Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S., Quantitative benchmark computations of two-dimensional bubble dynamics, Int J Numer Methods Fluids, 60, 1259-1288 (2009) · Zbl 1273.76276
[75] Sun, P.; Ming, F.; Zhang, A.; Yao, X., Investigation of coalescing and bouncing of rising bubbles under the wake influences using SPH method, vol. 8B (2014), Proc. Int. Conf. Offshore Mech. Arct. Eng. - OMAE
[76] Turek, S., On discrete projection methods for the incompressible Navier-Stokes equations: An algorithmical approach, Comput Methods Appl Mech Eng, 143, 271-288 (1997) · Zbl 0898.76069
[77] Grenier, N.; Le Touzé, D.; Colagrossi, A.; Antuono, M.; Colicchio, G., Viscous bubbly flows simulation with an interface SPH model, Ocean Eng, 69, 88-102 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.