×

On well-posedness for perturbed quasi-equilibrium and quasi-optimization problems. (English) Zbl 1475.90126

Summary: We propose definitions of well-posedness under perturbation in terms of suitable asymptotically solving sequences, not embedding a given problem into a parameterized family. When considering in detail quasi-equilibrium and quasi-optimization problems as well as optimization problems with equilibrium constraints, we establish sufficient conditions for both well-posedness and unique well-posedness. For cases with noncompact underlying sets of constraints, measures of noncompactness are employed. We provide numerous examples to ensure the essentialness of the assumptions imposed in the obtained results.

MSC:

90C48 Programming in abstract spaces
90C46 Optimality conditions and duality in mathematical programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hadamard, J., Sur le problemes aux dèrivees partielles et leur signification physiqué, Bull. Univ. Princeton, 13, 49-52 (1902)
[2] Tykhonov, A. N., On the stability of the functional optimization problem, Soviet Comput. Math. Math. Phys, 6, 28-33 (1966) · Zbl 0212.23803
[3] Levitin, E. S.; Polyak, B. T., Convergence of minimizing sequences in conditional extremum problems, Soviet Math. Dokl, 7, 764-767 (1966) · Zbl 0161.07002
[4] Dontchev, A. L.; Zolezzi, T., Well-Posed Optimization Problems (1993), Berlin: Springer, Berlin · Zbl 0797.49001
[5] Zolezzi, T., Well-posedness criteria in optimization with application to the calculus of variations, Nonlinear Anal, 25, 5, 437-453 (1995) · Zbl 0841.49005 · doi:10.1016/0362-546X(94)00142-5
[6] Zolezzi, T., Extended well-posedness of optimization problems, J. Optim. Theory Appl., 91, 1, 257-266 (1996) · Zbl 0873.90094 · doi:10.1007/BF02192292
[7] Zolezzi, T., Well-posedness and optimization under perturbations, Ann. Oper. Res, 101, 1-4, 351-361 (2001) · Zbl 0996.90081 · doi:10.1023/A:1010961617177
[8] Bednarczuck, E., An approach to well-posedness in vector optimization: Consequences to stability, Control Cybernet, 23, 107-122 (1994) · Zbl 0811.90092
[9] Revalski, J. P., Hadamard and strong well-posedness for convex programs, SIAM J. Optim, 7, 2, 519-526 (1997) · Zbl 0873.49011 · doi:10.1137/S1052623495286776
[10] Ioffe, A. D.; Zaslavski, A. J., Variational principles and well-posedness in optimization and calculus of variations, SIAM J. Control Optim, 38, 2, 566-581 (2000) · Zbl 0997.49023 · doi:10.1137/S0363012998335632
[11] Huang, X. X., Pointwise well-posedness of perturbed vector optimization problems in a vector-valued variational principle, J. Optim. Theory Appl, 108, 3, 671-686 (2001) · Zbl 1017.90098 · doi:10.1023/A:1017595610700
[12] Miglierina, E.; Molho, E.; Rocca, M., Well-posedness and scalarization in vector optimization, J. Optim. Theory Appl., 126, 2, 391-409 (2005) · Zbl 1129.90346 · doi:10.1007/s10957-005-4723-1
[13] Ioffe, A. D.; Lucchetti, R. E., Typical convex program is very well posed, Math. Program, 104, 2-3, 483-499 (2005) · Zbl 1082.49030 · doi:10.1007/s10107-005-0625-0
[14] Morgan, J.; Scalzo, V., Discontinuous but well-posed optimization problems, SIAM J. Optim, 17, 3, 861-870 (2006) · Zbl 1119.49026 · doi:10.1137/050636358
[15] Huang, X. X.; Yang, X. Q., Generalized Levitin-Polyak well-posedness in constrained optimization, SIAM J. Optim, 17, 1, 243-258 (2006) · Zbl 1137.49024 · doi:10.1137/040614943
[16] Crespi, G. P.; Papalia, M.; Rocca, M., Extended well-posedness of quasiconvex vector optimization problems, J. Optim. Theory Appl., 141, 2, 285-297 (2009) · Zbl 1169.90020 · doi:10.1007/s10957-008-9494-z
[17] Dang, V. D.; Hà, H. V.; Phạm, T. S., Well-posedness in unconstrained polynomial optimization problems, SIAM J. Optim, 26, 3, 1411-1428 (2016) · Zbl 1344.49043 · doi:10.1137/15100360X
[18] Kimura, K.; Liou, Y. C.; Wu, S. Y.; Yao, J. C., Well-posedness for parametric vector equilibrium problems with applications, J. Ind. Manag. Optim, 4, 2, 313-327 (2008) · Zbl 1161.90479 · doi:10.3934/jimo.2008.4.313
[19] Huang, N. J.; Long, X. J.; Zhao, C. W., Well-posedness for vector quasi-equilibrium problems with applications, J. Ind. Manag. Optim, 5, 2, 341-349 (2009) · Zbl 1192.49028 · doi:10.3934/jimo.2009.5.341
[20] Bianchi, M.; Kassay, G.; Pini, R., Well-posed equilibrium problems, Nonlinear Anal, 72, 1, 460-468 (2010) · Zbl 1180.49028 · doi:10.1016/j.na.2009.06.081
[21] Anh, L. Q.; Khanh, P. Q.; Van, D. T. M., Well-posedness without semicontinuity for parametric quasiequilibria and quasi-optimization, Comput. Math. Appl, 62, 4, 2045-2057 (2011) · Zbl 1231.49022 · doi:10.1016/j.camwa.2011.06.047
[22] Anh, L. Q.; Duy, T. Q., Tykhonov well-posedness for lexicographic equilibrium problems, Optimization., 65, 11, 1929-1948 (2016) · Zbl 1353.49034 · doi:10.1080/02331934.2016.1209673
[23] Rabian, W.; Anh, L. Q.; Boonman, P., Well-posedness for general parametric quasi-variational inclusion problems, Optimization., 66, 1, 93-111 (2017) · Zbl 1365.90268 · doi:10.1080/02331934.2016.1253085
[24] Fang, Y. P.; Hu, R.; Huang, N. J., Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints, Comput. Math. Appl, 55, 1, 89-100 (2008) · Zbl 1179.49007 · doi:10.1016/j.camwa.2007.03.019
[25] Anh, L. Q.; Khanh, P. Q.; Van, D. T. M.; Yao, J. C., Well-posedness for vector quasiequilibria, Taiwanese J. Math, 13, 2, 713-737 (2009) · Zbl 1176.49030 · doi:10.11650/twjm/1500405398
[26] Anh, L. Q.; Khanh, P. Q.; Van, D. T. M., Well-posedness under relaxed semicontinuity for bilevel equilibrium and optimization problems with equilibrium constraints, J. Optim. Theory Appl., 153, 1, 42-59 (2012) · Zbl 1254.90244 · doi:10.1007/s10957-011-9963-7
[27] Panagiotopoulos, P. D., Hemivariational Inequalities and Applications in Mechanics and Engineering (1993), New York: Springer, New York · Zbl 0826.73002
[28] Lescarret, C., Cas d’addition des applications monotones maximales dans un espace de Hilbert, C. R. Acad. Sci. Paris, 261, 1160-1163 (1965) · Zbl 0138.08204
[29] Browder, F. E., On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces, Proc. Natl. Acad. Sci. U. S. A, 56, 2, 419-425 (1966) · Zbl 0143.36902 · doi:10.1073/pnas.56.2.419
[30] Muu, L. D.; Nguyen, V. H.; Quy, N. V., On Nash-Cournot oligopolistic market equilibrium models with concave cost functions, J. Glob. Optim., 41, 3, 351-364 (2008) · Zbl 1146.91029 · doi:10.1007/s10898-007-9243-0
[31] Bianchi, M.; Schaible, S., Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl., 90, 1, 31-43 (1996) · Zbl 0903.49006 · doi:10.1007/BF02192244
[32] Bianchi, M.; Hadjisavvas, N.; Schaible, S., Equilibrium problems with generalized monotone bifunctions, J. Optim. Theory Appl, 92, 3, 527-542 (1997) · Zbl 0878.49007 · doi:10.1023/A:1022603406244
[33] Giannessi, F., Vector Variational Inequalities and Vector Equilibria (2000), Dordrecht: Kluwer Academic, Dordrecht · Zbl 0952.00009
[34] Hai, N. X.; Khanh, P. Q., Existence of solutions to general quasi-equilibrium problems and applications, J. Optim. Theory Appl., 133, 3, 317-327 (2007) · Zbl 1146.49004 · doi:10.1007/s10957-007-9170-8
[35] Hai, N. X.; Khanh, P. Q., The solution existence of general variational inclusion problems, J. Math. Anal. Appl, 328, 2, 1268-1277 (2007) · Zbl 1108.49020 · doi:10.1016/j.jmaa.2006.06.058
[36] Hai, N. X.; Khanh, P. Q., The existence of ε-solutions to general quasi-equilibrium problems, Vietnam J. Math, 35, 563-572 (2007) · Zbl 1217.49013
[37] Hai, N. X.; Khanh, P. Q.; Quan, N. H., On the existence of solutions to quasivariational inclusion problems, J. Glob. Optim., 45, 4, 565-581 (2009) · Zbl 1190.49009 · doi:10.1007/s10898-008-9390-y
[38] Castellani, M.; Pappalardo, M.; Passacantando, M., Existence results for nonconvex equilibrium problems, Optim. Meth. Softw, 25, 1, 49-58 (2010) · Zbl 1190.90234 · doi:10.1080/10556780903151557
[39] Sadeqi, I.; Alizadeh, C. G., Existence of solutions of generalized vector equilibrium problems in reflexive Banach spaces, Nonlinear Anal, 74, 6, 2226-2234 (2011) · Zbl 1233.90266 · doi:10.1016/j.na.2010.11.027
[40] Khanh, P. Q.; Long, V. S. T., Invariant-point theorems and existence of solutions to optimization-related problems, J. Glob. Optim., 58, 3, 545-564 (2014) · Zbl 1297.90127 · doi:10.1007/s10898-013-0065-y
[41] Yu, J.; Luo, Q., On essential of the solution set of generalized games, J. Math. Anal. Appl, 230, 2, 303-310 (1999) · Zbl 0916.90278 · doi:10.1006/jmaa.1998.6202
[42] Yu, J.; Xiang, S. W., On essential components of the set of Nash equiliblirum points, Nonlinear Anal, 38, 2, 259-264 (1999) · Zbl 0967.91004 · doi:10.1016/S0362-546X(98)00193-X
[43] Bonsangue, M. M.; van Breugel, F.; Rutten, J. J. M. M., Generalized metric spaces: Completion, topology, and powerdomains via the Yoneda embedding, Theor. Comput. Sci, 193, 1-2, 1-51 (1998) · Zbl 0997.54042 · doi:10.1016/S0304-3975(97)00042-X
[44] Danes, J., On the Istratescu measure of noncompactness, Bull. Math. Soc. Sci. Math. R.S. Roumanie, 16, 403-406 (1972) · Zbl 0293.54038
[45] Banas, J.; Goebel, K., Measures of Noncompactness in Banach Spaces (1980), New York: Marcel Dekker, New York · Zbl 0441.47056
[46] Giannessi, F.; Mastroeni, G.; Pellegrini, L.; Giannessi, F., Vector Variational Inequalities and Vector Equilibria, On the theory of vector optimization and variational inequalities. Image space analysis and separation, 141-215 (2000), Dordrecht: Kluwer, Dordrecht · Zbl 0985.49005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.