×

Standard subspaces of Hilbert spaces of holomorphic functions on tube domains. (English) Zbl 1495.32096

Authors’ abstract: In this article we study standard subspaces of Hilbert spaces of vector-valued holomorphic functions on tube domains \(E + i C^0\), where \(C \subseteq E\) is a pointed generating cone invariant under \(e^{{{\mathbb{R}}}h}\) for some endomorphism \(h \in \operatorname{End}(E)\), diagonalizable with the eigenvalues \(1\), \(0\), \(-1\) (generalizing a Lorentz boost). This data specifies a wedge domain \(W(E,C,h) \subseteq E\) and one of our main results exhibits corresponding standard subspaces as being generated using test functions on these domains. We also investigate aspects of reflection positivity for the triple \((E,C,e^{\pi i h})\) and the support properties of distributions on \(E\), arising as Fourier transforms of operator-valued measures defining the Hilbert spaces \(\mathcal{H} \). For the imaginary part of these distributions, we find similarities to the well known Huygens’ principle, relating to wedge duality in the Minkowski context. Interesting examples are the Riesz distributions associated to euclidean Jordan algebras.

MSC:

32V20 Analysis on CR manifolds
22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
32A38 Algebras of holomorphic functions of several complex variables
46L60 Applications of selfadjoint operator algebras to physics
81T05 Axiomatic quantum field theory; operator algebras
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Araki, H., Mathematical Theory of Quantum Fields, Series of Monographs on Physics (1999), Oxford: Oxford University Press, Oxford · Zbl 0998.81501
[2] Araki, H.; Zsidó, L., Extension of the structure theorem of Borchers and its application to half-sided modular inclusions, Rev. Math. Phys., 17, 5, 491-543 (2005) · Zbl 1088.46032 · doi:10.1142/S0129055X05002388
[3] Araki, H.; Woods, EJ, Representations of the canonical commutation relations describing a nonrelativistic infinite free Bose gas, J. Math. Phys., 4, 637-662 (1963) · doi:10.1063/1.1704002
[4] Baumgärtel, H.; Jurke, M.; Lledo, F., Twisted duality of the CAR-algebra, J. Math. Phys., 43, 8, 4158-4179 (2002) · Zbl 1060.46040 · doi:10.1063/1.1483376
[5] Baumgärtel, H.; Wollenberg, M., Causal Nets of Operator Algebras (1992), Berlin: Akademie Verlag, Berlin · Zbl 0749.46038
[6] Borchers, H-J, When does Lorentz invariance imply wedge duality, Lett. Math. Phys., 35, 39-60 (1995) · Zbl 0833.46054 · doi:10.1007/BF00739154
[7] Borchers, H.-J.: On the use of modular groups in quantum field theory. Annales de l’I. H. P., Sect. A 63(4), 331-382 (1995) · Zbl 0838.46059
[8] Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I, 2nd ed. Texts and Monographs in Physics. Springer (1987) · Zbl 0905.46046
[9] Brunetti, R.; Guido, D.; Longo, R., Modular localization and Wigner particles, Rev. Math. Phys., 14, 759-785 (2002) · Zbl 1033.81063 · doi:10.1142/S0129055X02001387
[10] Buchholz, D.: On the structure of local quantum fields with non-trivial interaction. In: Proceedings of the International Conference on Operator Algebras, Ideals and their Application in Theoretical Physics. Baumgärtel, Lassner, Pietsch, Uhlmann (eds.), pp. 146-153; Teubner Verlagsgesellschaft, Leipzig · Zbl 0404.46054
[11] Buchholz, D.; Dreyer, O.; Florig, M.; Summers, SJ, Geometric modular action and spacetime symmetry groups, Rev. Math. Phys., 12, 4, 475-560 (2000) · Zbl 1044.81082 · doi:10.1142/S0129055X00000174
[12] Buchholz, D.; Epstein, H., Spin and statistics of quantum topological charges, Fysica, 17, 329-343 (1985)
[13] Doplicher, S.; Haag, R.; Roberts, J-E, Local observables and particle statistics II, Commun. Math. Phys., 35, 49-85 (1974) · doi:10.1007/BF01646454
[14] Eckmann, J-P; Osterwalder, K., An application of Tomita’s theory of modular Hilbert algebras: duality for free Bose fields, J. Funct. Anal., 13, 1, 1-12 (1973) · Zbl 0262.46068 · doi:10.1016/0022-1236(73)90062-1
[15] Epstein, H., CTP invariance of the S-Matrix in a theory of local observables, J. Mat. Phy., 8, 750-767 (1967) · Zbl 0163.22303 · doi:10.1063/1.1705273
[16] Faraut, J.; Koranyi, A., Analysis on Symmetric Cones (1994), Oxford: Oxford University Press, Oxford · Zbl 0841.43002
[17] Foit, J., Abstract twisted duality for quantum free Fermi fields, Publ. Res. Inst. Math. Sci., 19, 2, 729-741 (1983) · Zbl 0534.46049 · doi:10.2977/prims/1195182448
[18] Gérard, C.: Microlocal Analysis of Quantum Fields on Curved Spacetimes. ESI Lectures in Mathematics and Physics. Eur. Math. Soc. 10 (2019) · Zbl 1444.35008
[19] Ginoux, N.: Linear wave equations. In: Bär, C., Fredenhagen, K. (eds.) Quantum Field Theory on Curved Spacetimes. Lecture Notes in Physics, vol. 786, pp. 59-84. Springer (2009) · Zbl 1184.81046
[20] Glöckner, H., Neeb, K.-H.: Infinite Dimensional Lie Groups, book in preparation
[21] Günaydin, M., Generalized conformal and superconformal group actions and Jordan algebras, Modern Phys. Lett. A, 8, 15, 1407-1416 (1993) · Zbl 1015.17501 · doi:10.1142/S0217732393001124
[22] Haag, R.: Local Quantum Physics. Fields, Particles, Algebras, 2nd edn. Texts and Monographs in Physics. Springer, Berlin (1996) · Zbl 0857.46057
[23] Hilgert, J.; Neeb, K-H, Vector-valued Riesz distributions on euclidian Jordan algebras, J. Geom. Anal., 11, 1, 43-75 (2001) · Zbl 0989.22021 · doi:10.1007/BF02921953
[24] Hilgert, J., Neeb, K.-H., Ørsted, B.: Conal Heisenberg algebras and associated Hilbert spaces. J. Reine Angew. Math. 474, 67-112 (1996) · Zbl 0862.22011
[25] Jordan, P.; von Neumann, J.; Wigner, EP, On an algebraic generalization of the quantum mechanical formalism, Ann. Math., 2, 35, 29-64 (1934) · Zbl 0008.42103 · doi:10.2307/1968117
[26] Jorgensen, PET; Ólafsson, G., Unitary representations of Lie groups with reflection symmetry, J. Funct. Anal., 158, 26-88 (1998) · Zbl 0911.22012 · doi:10.1006/jfan.1998.3285
[27] Jorgensen, P.E.T., Ólafsson, G.: Unitary representations and Osterwalder-Schrader duality. In: Doran, R.S., Varadarajan, V.S. (eds.) The Mathematical Legacy of Harish-Chandra: A Celebration of Representation Theory and Harmonic Analysis. PSPM, AMS (2000) · Zbl 0959.22008
[28] Lechner, G.; Longo, R., Localization in nets of standard spaces, Commun. Math. Phys., 336, 1, 27-61 (2015) · Zbl 1318.81054 · doi:10.1007/s00220-014-2199-2
[29] Lechner, G.; Li, D.; Queffélec, H.; Rodríguez-Piazza, L., Approximation numbers of weighted composition operators, J. Funct. Anal., 274, 7, 1928-1958 (2018) · Zbl 06837528 · doi:10.1016/j.jfa.2018.01.010
[30] Longo, R.: Real Hilbert subspaces, modular theory, SL(2, R) and CFT in “Von Neumann Algebras in Sibiu”, 33-91, Theta Ser. Adv. Math. 10, Theta, Bucharest · Zbl 1199.81032
[31] Mack, G., de Riese, M.: Simple space-time symmetries: generalizing conformal field theory. J. Math. Phys. 48(5), 052304, 21 (2007) · Zbl 1144.81383
[32] Morinelli, V., Neeb, K.-H.: Covariant homogeneous nets of standard subspaces, Comm. Math. Phys., doi:10.1007/s00220-021-04046-6; arXiv:2010.07128 · Zbl 1473.81095
[33] Mund, J., The Bisognano-Wichmann property for massive theory, Ann. Henri Poincaré, 2, 907-926 (2001) · Zbl 1092.81524 · doi:10.1007/s00023-001-8598-x
[34] Neeb, K-H, Operator valued positive definite kernels on tubes, Monatshefte für Math., 126, 125-160 (1998) · Zbl 0956.22003 · doi:10.1007/BF01473583
[35] Neeb, K-H, Holomorphy and Convexity in Lie Theory, Expositions in Mathematics 28 (2000), Berlin: de Gruyter Verlag, Berlin · Zbl 0964.22004 · doi:10.1515/9783110808148
[36] Neeb, K.-H.: Finite dimensional semigroups of unitary endomorphisms of standard subspaces. Representation Theory 25, 300-343 (2021). arXiv:1902.02266 · Zbl 1492.17010
[37] Neeb, K.-H.: Semigroups in 3-graded Lie groups and endomorphisms of standard subspaces, Kyoto Math. J., to appear; arXiv:1912.13367
[38] Neeb, K-H; Ólafsson, G., Reflection positivity and conformal symmetry, J. Funct. Anal., 266, 2174-2224 (2014) · Zbl 1290.22006 · doi:10.1016/j.jfa.2013.10.030
[39] Neeb, K.-H., Ólafsson, G.: Reflection positivity for the circle group, In: “Proceedings of the 30th International Colloquium on Group Theoretical Methods,” Journal of Physics: Conference Series 597 (2015), 012004; arXiv:1411.2439
[40] Neeb, K.-H., Ólafsson, G.: Antiunitary representations and modular theory. In: Grabowska, K., et al, Grabowski, J., Fialowski, A., Neeb, K.-H. (eds) “50th Sophus Lie Seminar”, Banach Center Publications, vol. 113, pp. 291-362 (2017). arXiv:1704.01336 · Zbl 1401.22011
[41] Neeb, K.-H., Ólafsson, G.: Reflection Positivity. A Representation Theoretic Perspective, Springer Briefs in Mathematical Physics 32, (2018) · Zbl 1403.22001
[42] Neeb, K.-H., Ólafsson, G.: KMS conditions, standard real subspaces and reflection positivity on the circle group, Pac. J. Math. 299:1 (2019), 117-169; arXiv:1611.00080 · Zbl 1422.43009
[43] Neeb, K.-H., Ólafsson, G.: Nets of standard subspaces on Lie groups, Advances in Math. 384 (2021) 107715; arXiv:2006.09832 · Zbl 1487.22015
[44] Neeb, K.-H., Ólafsson, G.: Wedge domains in non-compactly causal symmetric spaces, in preparation · Zbl 1527.22022
[45] Neeb, K.-H., Ólafsson, G.: Wedge domains in compactly causal symmetric spaces, in: preparation · Zbl 07702890
[46] Oeh, D.: Nets of standard subspaces induced by unitary representations of admissible Lie groups, arXiv:2104.02465
[47] Osterwalder, K.; Schrader, R., Axioms for Euclidean Green’s functions. I, Commun. Math. Phys., 31, 83-112 (1973) · Zbl 0274.46047 · doi:10.1007/BF01645738
[48] Reed, S.; Simon, B., Methods of Mathematical Physics II: Fourier Analysis. Self-adjointness (1975), New York: Academic Press, New York · Zbl 0308.47002
[49] Rejzner, K., Perturbative Algebraic Quantum Field Theory. An Introduction for Mathematicians. Mathematical Physics Studies (2016), Cham: Springer, Cham · Zbl 1347.81011
[50] Schlingemann, D., From Euclidean field theory to quantum field theory, Rev. Math. Phys., 11, 9, 1151-1178 (1999) · Zbl 0969.81036 · doi:10.1142/S0129055X99000362
[51] Schlingemann, D.: Application of Tomita-Takesaki theory in algebraic euclidean field theories, Preprint, arXiv:hep-th/9912219 22 (Dec 1999)
[52] Schrader, R., Reflection positivity for the complementary series of SL(2n, \({\mathbb{C}} )\), Publ. Res. Inst. Math. Sci., 22, 119-141 (1986) · Zbl 0601.22013 · doi:10.2977/prims/1195178376
[53] Simon, B., The \(P(\Phi )_2\) Euclidean (Quantum) Field Theory (1974), Princeton: Princeton University Press, Princeton · Zbl 1175.81146
[54] Streater, RF; Wightmann, AS, PCT, Spin, Statistics and All that. Physics Monograph Series (1964), New York: Math. W. A. Benjamin Inc,, New York · Zbl 0135.44305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.