×

zbMATH — the first resource for mathematics

Abelian differentials with prescribed singularities. (Différentielles abéliennes à singularités prescrites.) (French. English summary) Zbl 07388595
Summary: The local invariants of a meromorphic abelian differential on a Riemann surface of genus \(g\) are the orders of zeros and poles, and the residues at the poles. The main result of this paper is that with few exceptions, every pattern of orders and residues can be obtain by an abelian differential. These exceptions are two families in genus zero when the orders of the poles are either all simple or all nonsimple. Moreover, we even show that the pattern can be realized in each connected component of the strata. Finally we give consequences of these results in algebraic and flat geometry. The main ingredient of the proof is the flat representation of the abelian differentials.
MSC:
30F30 Differentials on Riemann surfaces
57M50 General geometric structures on low-dimensional manifolds
14H55 Riemann surfaces; Weierstrass points; gap sequences
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bainbridge, Matt; Chen, Dawei; Gendron, Quentin; Grushevsky, Samuel; Möller, Martin, Compactification of strata of abelian differentials, Duke Math. J., 167, 12, 2347-2416 (2018) · Zbl 1403.14058
[2] Bainbridge, Matt; Chen, Dawei; Gendron, Quentin; Grushevsky, Samuel; Möller, Martin, Strata of \(k\)-differentials, Algebraic Geom., 6, 2, 196-233 (2019) · Zbl 1440.14148
[3] Boissy, Correntin, Connected components of the strata of the moduli space of meromorphic differentials, Comment. Math. Helv., 90, 2, 255-286 (2015) · Zbl 1323.30060
[4] de Saint-Gervais, Henri Paul, Uniformisation des surfaces de Riemann (2010), ENS Éditions, Lyon · Zbl 1228.30001
[5] Eisenbud, David; Harris, Joe, Existence, decomposition, and limits of certain Weierstrass points, Invent. Math., 87, 495-515 (1987) · Zbl 0606.14014
[6] Esteves, Eduardo; Medeiros, Nivaldo, Limit canonical systems on curves with two components, Invent. Math., 149, 2, 267-338 (2002) · Zbl 1046.14012
[7] Eremenko, Alexandre, Co-axial monodromy, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 20, 2, 619-634 (2020) · Zbl 07328842
[8] Gendron, Quentin, Sur les nœuds de Weierstraß, Ann. H. Lebesgue, 4, 571-589 (2021)
[9] Gendron, Quentin; Tahar, Guillaume, Différentielles à singularités prescrites (2017)
[10] Gendron, Quentin; Tahar, Guillaume, Différentielles quadratiques à singularités prescrites (2021)
[11] Gendron, Quentin; Tahar, Guillaume, \(k\)-différentielles à singularités prescrites (2021)
[12] Kontsevich, Maxim; Zorich, Anton, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153, 3, 631-678 (2003) · Zbl 1087.32010
[13] Masur, Howard; Smillie, John, Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms, Comment. Math. Helv., 68, 2, 289-307 (1993) · Zbl 0792.30030
[14] Mullane, Scott, Strata of differentials of the second kind, positivity and irreducibility of certain Hurwitz spaces (2021) · Zbl 07383887
[15] Möller, Martin; Ulirsch, Martin; Werner, Annette, Realizability of tropical canonical divisors, J. Eur. Math. Soc. (JEMS), 23, 1, 185-217 (2021) · Zbl 1466.14033
[16] Naveh, Yoav, Tight upper bounds on the number of invariant components on translation surfaces, Israel J. Math., 165, 1, 211-231 (2008) · Zbl 1148.32008
[17] Reyssat, Éric, Quelques aspects des surfaces de Riemann, 77 (1989), Birkhäuser · Zbl 0689.30001
[18] Tahar, Guillaume, Counting saddle connections in flat surfaces with poles of higher order, Geom. Dedicata, 196, 1, 145-186 (2018) · Zbl 1403.32003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.