×

Dynamical spin chains in 4D \(\mathcal{N} = 2\) SCFTs. (English) Zbl 1469.81075

Summary: This is the first in a series of papers devoted to the study of spin chains capturing the spectral problem of 4d \(\mathcal{N} = 2\) SCFTs in the planar limit. At one loop and in the quantum plane limit, we discover a quasi-Hopf symmetry algebra, defined by the \(R\)-matrix read off from the superpotential. This implies that when orbifolding the \(\mathcal{N} = 4\) symmetry algebra down to the \(\mathcal{N} = 2\) one and then marginaly deforming, the broken generators are not lost, but get upgraded to quantum generators. Importantly, we demonstrate that these chains are dynamical, in the sense that their Hamiltonian depends on a parameter which is dynamically determined along the chain. At one loop we map the holomorphic SU(3) scalar sector to a dynamical 15-vertex model, which corresponds to an RSOS model, whose adjacency graph can be read off from the gauge theory quiver/brane tiling. One scalar SU(2) sub-sector is described by an alternating nearest-neighbour Hamiltonian, while another choice of SU(2) sub-sector leads to a dynamical dilute Temperley-Lieb model. These sectors have a common vacuum state, around which the magnon dispersion relations are naturally uniformised by elliptic functions. Concretely, for the \(\mathbb{Z}_2\) quiver theory we study these dynamical chains by solving the one- and two-magnon problems with the coordinate Bethe ansatz approach. We confirm our analytic results by numerical comparison with the explicit diagonalisation of the Hamiltonian for short closed chains.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Beisert, N., Review of AdS/CFT integrability: an overview, Lett. Math. Phys., 99, 3 (2012) · Zbl 1268.81126 · doi:10.1007/s11005-011-0529-2
[2] Arkani-Hamed, N.; Bourjaily, JL; Cachazo, F.; Caron-Huot, S.; Trnka, J., The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP, 01, 041 (2011) · Zbl 1214.81141 · doi:10.1007/JHEP01(2011)041
[3] Caron-Huot, S.; He, S., Jumpstarting the all-loop S-matrix of planar N = 4 super Yang-Mills, JHEP, 07, 174 (2012) · Zbl 1397.81347 · doi:10.1007/JHEP07(2012)174
[4] Del Duca, V., All-order amplitudes at any multiplicity in the multi-Regge limit, Phys. Rev. Lett., 124, 161602 (2020) · doi:10.1103/PhysRevLett.124.161602
[5] Bargheer, T.; Caetano, J.; Fleury, T.; Komatsu, S.; Vieira, P., Handling handles: nonplanar integrability in \(\mathcal{N} = 4\) supersymmetric Yang-Mills theory, Phys. Rev. Lett., 121, 231602 (2018) · doi:10.1103/PhysRevLett.121.231602
[6] T. Bargheer, J. Caetano, T. Fleury, S. Komatsu and P. Vieira, Handling handles. Part II. Stratification and data analysis, JHEP11 (2018) 095 [arXiv:1809.09145] [INSPIRE]. · Zbl 1404.81216
[7] Gadde, A.; Pomoni, E.; Rastelli, L., Spin chains in \(\mathcal{N} = 2\) superconformal theories: from the ℤ_2quiver to superconformal QCD, JHEP, 06, 107 (2012) · Zbl 1397.81361 · doi:10.1007/JHEP06(2012)107
[8] Gadde, A.; Rastelli, L., Twisted magnons, JHEP, 04, 053 (2012) · Zbl 1348.81289 · doi:10.1007/JHEP04(2012)053
[9] Liendo, P.; Pomoni, E.; Rastelli, L., The complete one-loop dilation operator of N = 2 superconformal QCD, JHEP, 07, 003 (2012) · Zbl 1397.81385 · doi:10.1007/JHEP07(2012)003
[10] E. Pomoni and C. Sieg, From N = 4 gauge theory to N = 2 conformal QCD: three-loop mixing of scalar composite operators, arXiv:1105.3487 [INSPIRE].
[11] Gadde, A.; Liendo, P.; Rastelli, L.; Yan, W., On the integrability of planar N = 2 superconformal gauge theories, JHEP, 08, 015 (2013) · Zbl 1342.81580 · doi:10.1007/JHEP08(2013)015
[12] Pomoni, E., Integrability in N = 2 superconformal gauge theories, Nucl. Phys. B, 893, 21 (2015) · Zbl 1348.81324 · doi:10.1016/j.nuclphysb.2015.01.006
[13] Pomoni, E., 4D \(\mathcal{N} = 2\) SCFTs and spin chains, J. Phys. A, 53, 283005 (2020) · Zbl 1519.81438 · doi:10.1088/1751-8121/ab7f66
[14] Arutyunov, G.; Frolov, S.; Zamaklar, M., The Zamolodchikov-Faddeev algebra for AdS_5× S^5superstring, JHEP, 04, 002 (2007) · doi:10.1088/1126-6708/2007/04/002
[15] Baxter, RJ, Exactly solved models in statistical physics (2013), U.S.A: Dover Publications, U.S.A
[16] McCoy, BM, Advanced statistical mechanics (2010), Oxford U.K: Oxford University Press, Oxford U.K · Zbl 1198.82001
[17] H. Au-Yang, B. M. McCoy, J. H. H. perk, S. Tang and M.-L. Yan, Commuting transfer matrices in the chiral Potts models: Solutions of Star triangle equations with genus > 1, Phys. Lett. A123 (1987) 219 [INSPIRE].
[18] McCoy, BM; Perk, JHH; Tang, S.; Sah, C-H, Commuting transfer matrices for the four state selfdual chiral potts model with a genus three uniformizing Fermat curve, Phys. Lett. A, 125, 9 (1987) · doi:10.1016/0375-9601(87)90509-3
[19] Baxter, R., Some hyperelliptic function identities that occur in the chiral Potts model, J. Phys. A, 31, 6807 (1998) · Zbl 0941.33003 · doi:10.1088/0305-4470/31/32/005
[20] Torrielli, A., Yangians, S-matrices and AdS/CFT, J. Phys. A, 44, 263001 (2011) · Zbl 1221.81135 · doi:10.1088/1751-8113/44/26/263001
[21] Loebbert, F., Lectures on Yangian symmetry, J. Phys. A, 49, 323002 (2016) · Zbl 1356.81173 · doi:10.1088/1751-8113/49/32/323002
[22] V. Drinfeld, Quantum groups, J. Sov. Math.41 (1988) 898. · Zbl 0641.16006
[23] G. Felder, Elliptic quantum groups, in the proceedings of the 11^thInternational Conference on Mathematical Physics (ICMP-11), July 25-28, Paris, France (1994) [hep-th/9412207] [INSPIRE]. · Zbl 0998.17015
[24] G. Felder and A. Varchenko, Algebraic Bethe ansatz for the elliptic quantum group E_τη(sl_2), Nucl. Phys. B480 (1996) 485 [q-alg/9605024] [INSPIRE]. · Zbl 0925.17020
[25] V. Drinfeld, Quasi-Hopf algebras, Leningrad Math J.1 (1990) 1419. · Zbl 0718.16033
[26] V. Drinfeld, On quasitriangular quasi-hopf algebras and a group closely connected with Gal \(( \overline{Q}/Q )\), Leningrad Math J.2 (1991) 829. · Zbl 0728.16021
[27] O. Babelon, E. Billey and D. Bernard, A quasi-Hopf algebra interpretation of quantum 3-j and 6-j symbols and difference equations., Phys. Lett. B375 (1996) 89 [q-alg/9511019] [INSPIRE]. · Zbl 0894.17008
[28] B. Enriquez and G. Felder, Elliptic quantum groups E_τ,η \(( {\mathfrak{sl}}_2 )\) and quasi-Hopf algebras, Commun. Math. Phys.195 (1998) 651?689. · Zbl 0959.17013
[29] Jimbo, M.; Konno, H.; Odake, S.; Shiraishi, J., Quasi-Hopf twistors for elliptic quantum groups, Transform. Groups, 4, 303 (1999) · Zbl 0977.17012 · doi:10.1007/BF01238562
[30] Beisert, N., The SU(2|3) dynamic spin chain, Nucl. Phys. B, 682, 487 (2004) · Zbl 1036.82513 · doi:10.1016/j.nuclphysb.2003.12.032
[31] Bhardwaj, L.; Tachikawa, Y., Classification of 4d N = 2 gauge theories, JHEP, 12, 100 (2013) · Zbl 1342.81259 · doi:10.1007/JHEP12(2013)100
[32] Kachru, S.; Silverstein, E., 4D conformal theories and strings on orbifolds, Phys. Rev. Lett., 80, 4855 (1998) · Zbl 0947.81096 · doi:10.1103/PhysRevLett.80.4855
[33] Lawrence, AE; Nekrasov, N.; Vafa, C., On conformal field theories in four-dimensions, Nucl. Phys. B, 533, 199 (1998) · Zbl 1078.81559 · doi:10.1016/S0550-3213(98)00495-7
[34] M. R. Douglas and G. W. Moore, D-branes, quivers, and ALE instantons, hep-th/9603167 [INSPIRE].
[35] Beisert, N.; Roiban, R., The Bethe ansatz for Z(S) orbifolds of N = 4 super Yang-Mills theory, JHEP, 11, 037 (2005) · doi:10.1088/1126-6708/2005/11/037
[36] Wang, X-J; Wu, Y-S, Integrable spin chain and operator mixing in N = 1, 2 supersymmetric theories, Nucl. Phys. B, 683, 363 (2004) · Zbl 1107.81340 · doi:10.1016/j.nuclphysb.2003.12.040
[37] Ideguchi, K., Semiclassical strings on AdS_5× S^5/Z(M) and operators in orbifold field theories, JHEP, 09, 008 (2004) · doi:10.1088/1126-6708/2004/09/008
[38] Solovyov, A., Bethe Ansatz Equations for General Orbifolds of N = 4 SYM, JHEP, 04, 013 (2008) · Zbl 1246.81385 · doi:10.1088/1126-6708/2008/04/013
[39] M. Beccaria and G. Macorini, Y-system for Z_SOrbifolds of N = 4 SYM, JHEP06 (2011) 004 [Erratum ibid.01 (2012) 112] [arXiv:1104.0883] [INSPIRE]. · Zbl 1298.81208
[40] Arutyunov, G.; de Leeuw, M.; van Tongeren, SJ, Twisting the Mirror TBA, JHEP, 02, 025 (2011) · Zbl 1294.81158
[41] de Leeuw, M.; van Tongeren, SJ, The spectral problem for strings on twisted AdS_5× S^5, Nucl. Phys. B, 860, 339 (2012) · Zbl 1246.81231 · doi:10.1016/j.nuclphysb.2012.03.004
[42] Baume, F.; Heckman, JJ; Lawrie, C., 6D SCFTs, 4D SCFTs, conformal matter, and spin chains, Nucl. Phys. B, 967, 115401 (2021) · Zbl 07408620 · doi:10.1016/j.nuclphysb.2021.115401
[43] Heckman, JJ, Qubit construction in 6D SCFTs, Phys. Lett. B, 811, 135891 (2020) · Zbl 1472.81220 · doi:10.1016/j.physletb.2020.135891
[44] Leigh, RG; Strassler, MJ, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys. B, 447, 95 (1995) · Zbl 1009.81570 · doi:10.1016/0550-3213(95)00261-P
[45] Roiban, R., On spin chains and field theories, JHEP, 09, 023 (2004) · doi:10.1088/1126-6708/2004/09/023
[46] Berenstein, D.; Cherkis, SA, Deformations of N = 4 SYM and integrable spin chain models, Nucl. Phys. B, 702, 49 (2004) · Zbl 1198.81170 · doi:10.1016/j.nuclphysb.2004.09.005
[47] Berenstein, D.; Jejjala, V.; Leigh, RG, Marginal and relevant deformations of N = 4 field theories and noncommutative moduli spaces of vacua, Nucl. Phys. B, 589, 196 (2000) · Zbl 1060.81606 · doi:10.1016/S0550-3213(00)00394-1
[48] Bundzik, D.; Mansson, T., The general Leigh-Strassler deformation and integrability, JHEP, 01, 116 (2006) · doi:10.1088/1126-6708/2006/01/116
[49] Mansson, T.; Zoubos, K., Quantum symmetries and marginal deformations, JHEP, 10, 043 (2010) · Zbl 1291.81259 · doi:10.1007/JHEP10(2010)043
[50] Dlamini, H.; Zoubos, K., Marginal deformations and quasi-Hopf algebras, J. Phys. A, 52, 375402 (2019) · Zbl 1504.16054 · doi:10.1088/1751-8121/ab370f
[51] H. Dlamini and K. Zoubos, Integrable Hopf twists, marginal deformations and generalised geometry, arXiv:1602.08061 [INSPIRE].
[52] A. Gadde, E. Pomoni and L. Rastelli, The Veneziano limit of N = 2 superconformal QCD: towards the string dual of N = 2 SU(N_c) SYM with N_f = 2N_c, arXiv:0912.4918 [INSPIRE].
[53] L. D. Faddeev, N. Yu. Reshetikhin and L. A. Takhtajan, Quantization of Lie groups and Lie algebras, Leningrad Math. J.1 (1990) 193 [Alg. Anal.1 (1989) 178]. · Zbl 0677.17010
[54] Pasquier, V., Two-dimensional critical systems labelled by Dynkin diagrams, Nucl. Phys. B, 285, 162 (1987) · doi:10.1016/0550-3213(87)90332-4
[55] Di Francesco, P.; Zuber, JB, SU(N) lattice integrable models associated with graphs, Nucl. Phys. B, 338, 602 (1990) · doi:10.1016/0550-3213(90)90645-T
[56] Roche, P., Ocneanu cell calculus and integrable lattice models, Comm. Math. Phys., 127, 395 (1990) · Zbl 0709.60536 · doi:10.1007/BF02096764
[57] Fendley, P.; Ginsparg, PH, Noncritical orbifolds, Nucl. Phys. B, 324, 549 (1989) · doi:10.1016/0550-3213(89)90520-8
[58] A. Hanany and K. D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].
[59] Franco, S.; Hanany, A.; Kennaway, KD; Vegh, D.; Wecht, B., Brane dimers and quiver gauge theories, JHEP, 01, 096 (2006) · doi:10.1088/1126-6708/2006/01/096
[60] Franco, S.; Hanany, A.; Martelli, D.; Sparks, J.; Vegh, D.; Wecht, B., Gauge theories from toric geometry and brane tilings, JHEP, 01, 128 (2006) · doi:10.1088/1126-6708/2006/01/128
[61] Yamazaki, M., Brane tilings and their applications, Fortsch. Phys., 56, 555 (2008) · Zbl 1150.81017 · doi:10.1002/prop.200810536
[62] Minahan, JA; Zarembo, K., The Bethe ansatz for superconformal Chern-Simons, JHEP, 09, 040 (2008) · Zbl 1245.81102 · doi:10.1088/1126-6708/2008/09/040
[63] Gaiotto, D.; Giombi, S.; Yin, X., Spin chains in N = 6 superconformal Chern-Simons-Matter theory, JHEP, 04, 066 (2009) · doi:10.1088/1126-6708/2009/04/066
[64] Minahan, JA; Schulgin, W.; Zarembo, K., Two loop integrability for Chern-Simons theories with N = 6 supersymmetry, JHEP, 03, 057 (2009) · doi:10.1088/1126-6708/2009/03/057
[65] Bell, SC; Loly, PD; Southern, BW, Two-magnon states of the alternating ferromagnetic Heisenberg chain, J. PHys. Cond. Mat., 1, 9899 (1989) · doi:10.1088/0953-8984/1/49/010
[66] Medved, A.; Southern, BW; Lavis, DA, Two-magnon states of the alternating-bond ferrimagnetic chain, Phys. Rev. B, 43, 816 (1991) · doi:10.1103/PhysRevB.43.816
[67] P. N. Bibikov, Three magnons in an isotropic S = 1 ferromagnetic chain as an exactly solvable non-integrable system, J. Stat. Mech. (2016) 033109. · Zbl 1456.82230
[68] K. Zoubos, Review of AdS/CFT integrability, chapter IV.2: deformations, orbifolds and open boundaries, Lett. Math. Phys.99 (2012) 375 [arXiv:1012.3998] [INSPIRE]. · Zbl 1244.81057
[69] Majid, S., Foundations of quantum group theory (1995), Cambridge U.K: Cambridge University Press, Cambridge U.K · Zbl 0857.17009 · doi:10.1017/CBO9780511613104
[70] H. Ewen and O. Ogievetsky, Classification of the GL(3) quantum matrix groups, q-alg/9412009.
[71] Gómez, C.; Ruiz-Altaba, M.; Sierra, G., Quantum groups in two-dimensional physics (1996), Cambridge U.K: Cambridge University Press, Cambridge U.K · Zbl 0885.17011 · doi:10.1017/CBO9780511628825
[72] Arnaudon, D.; Avan, J.; Frappat, L.; Ragoucy, É.; Rossi, M., Cladistics of double Yangians and elliptic algebras, J. Phys. A, 33, 6279 (2000) · Zbl 0958.17005 · doi:10.1088/0305-4470/33/36/302
[73] P. Etingof, On the dynamical Yang-Baxter equation, Proc. ICM2 (2002) 555 [math/0207008]. · Zbl 1026.17014
[74] G. Felder, Conformal field theory and integrable systems associated to elliptic curves, hep-th/9407154 [INSPIRE]. · Zbl 0852.17014
[75] Andrews, GE; Baxter, RJ; Forrester, PJ, Eight vertex SOS model and generalized Rogers-Ramanujan type identities, J. Statist. Phys., 35, 193 (1984) · Zbl 0589.60093 · doi:10.1007/BF01014383
[76] Wadati, M.; Deguchi, T.; Akutsu, Y., Exactly solvable models and knot theory, Phys. Rept., 180, 247 (1989) · Zbl 0847.57007 · doi:10.1016/0370-1573(89)90123-3
[77] Kharchev, S.; Zabrodin, A., Theta vocabulary I, J. Geom. Phys., 94, 19 (2015) · Zbl 1318.33035 · doi:10.1016/j.geomphys.2015.03.010
[78] Deguchi, T., Construction of some missing eigenvectors of the XYZ spin chain at the discrete coupling constants and the exponentially large spectral degeneracy of the transfer matrix, J. Phys. A, 35, 879 (2002) · Zbl 0993.82018 · doi:10.1088/0305-4470/35/4/303
[79] Yagi, J., Surface defects and elliptic quantum groups, JHEP, 06, 013 (2017) · Zbl 1380.81157 · doi:10.1007/JHEP06(2017)013
[80] Yagi, J., Quiver gauge theories and integrable lattice models, JHEP, 10, 065 (2015) · Zbl 1388.81452 · doi:10.1007/JHEP10(2015)065
[81] Maruyoshi, K.; Yagi, J., Surface defects as transfer matrices, PTEP, 2016 (2016) · Zbl 1361.81150
[82] V. F. R. Jones, Baxterization, Springer, Germant (1990), p. 5.
[83] L. Takhtajan, The quantum inverse problem method and the XYZ Heisenberg model, Physica 3D1-2 (1981) 231. · Zbl 1194.81247
[84] Pearce, PA; Seaton, KA, A solvable hierarchy of cyclic solid-on-solid lattice models, Phys. Rev. Lett., 60, 1347 (1988) · doi:10.1103/PhysRevLett.60.1347
[85] Kuniba, A.; Yajima, T., Local state probabilities for an infinite sequence of solvable lattice models, J. Phys. A, 21, 519 (1988) · Zbl 0641.10013 · doi:10.1088/0305-4470/21/2/029
[86] Pearce, PA; Seaton, KA, Exact solution of cyclic solid-on-solid lattice models, Annals Phys., 193, 326 (1989) · Zbl 0695.17008 · doi:10.1016/0003-4916(89)90003-1
[87] Jimbo, M.; Miwa, T.; Okado, M., Solvable lattice models whose states are dominant integral weights of \({A}_{n-1}^{(1)} \), Lett. Math. Phys., 14, 123 (1987) · Zbl 0642.17015 · doi:10.1007/BF00420302
[88] Jimbo, M.; Miwa, T.; Okado, M., Local state probabilities of solvable lattice models: an \({A}_{n-1}^{(1)}\) family, Nucl. Phys. B, 300, 74 (1988) · doi:10.1016/0550-3213(88)90587-1
[89] Kuniba, A., A new family of solvable lattice models associated with \({A}_n^{(1)} \), Adv. Stud. Pure Math., 19, 367 (1989) · Zbl 0712.17022 · doi:10.2969/aspm/01910367
[90] Dupic, T.; Estienne, B.; Ikhlef, Y., The fully packed loop model as a non-rational W_3conformal field theory, J. Phys. A, 49, 505202 (2016) · Zbl 1357.81151 · doi:10.1088/1751-8113/49/50/505202
[91] Morin-Duchesne, A.; Pearce, PA; Rasmussen, J., Fusion hierarchies, T -systems and Y -systems for the \({A}_2^{(1)}\) models, J. Stat. Mech., 01, 3101 (2019) · Zbl 07382767
[92] K. Fabricius and B. M. McCoy, Bethe’s equation is incomplete for the XXZ model at roots of unity, J. Statist. Phys.103 (2001) 647 [cond-mat/0009279] [INSPIRE]. · Zbl 1019.82003
[93] Nienhuis, B., Critical spin-1 vertex models and o(n) models, Int. J. Mod. Phys., 04, 929 (1990) · doi:10.1142/S0217979290000449
[94] Kostov, IK, Strings with discrete target space, Nucl. Phys. B, 376, 539 (1992) · doi:10.1016/0550-3213(92)90120-Z
[95] Warnaar, SO; Nienhuis, B.; Seaton, KA, New construction of solvable lattice models including an Ising model in a field, Phys. Rev. Lett., 69, 710 (1992) · Zbl 0968.82509 · doi:10.1103/PhysRevLett.69.710
[96] Roche, P., On the construction of integrable dilute A-D-E models, Phys. Lett. B, 285, 49 (1992) · doi:10.1016/0370-2693(92)91298-N
[97] Warnaar, SO; Pearce, PA; Seaton, KA; Nienhuis, B., Order parameters of the dilute A models, J. Statist. Phys., 74, 469 (1994) · Zbl 0827.60098 · doi:10.1007/BF02188569
[98] Warnaar, SO, Algebraic construction of higher-rank dilute A models, Nucl. Phys. B, 435, 463 (1995) · Zbl 1020.82571 · doi:10.1016/0550-3213(94)00424-D
[99] Behrend, RE; Pearce, PA, Boundary weights for Temperley-Lieb and dilute Temperley-Lieb models, Int. J. Mod. Phys., 11, 2833 (1997) · Zbl 1229.82062 · doi:10.1142/S0217979297001386
[100] Bianchini, D.; Ercolessi, E.; Pearce, PA; Ravanini, F., RSOS quantum chains associated with off-critical minimal models and Z_nparafermions, J. Stat. Mech., 1503 (2015) · Zbl 1456.82031 · doi:10.1088/1742-5468/2015/03/P03010
[101] A. Morin-Duchesne, A. Klümper and P. A. Pearce, Groundstate finite-size corrections and dilogarithm identities for the twisted \({A}_1^{(1)} , {A}_2^{(1)}\) and \({A}_2^{(2)}\) models, arXiv:2006.08233 [INSPIRE]. · Zbl 1504.82014
[102] Izergin, AG; Korepin, VE, The inverse scattering method approach to the quantum Shabat-Mikhailov model, Commun. Math. Phys., 79, 303 (1981) · doi:10.1007/BF01208496
[103] Jimbo, M.; Miwa, T.; Okado, M., Solvable lattice models related to the vector representation of classical simple Lie algebras, Commun. Math. Phys., 116, 507 (1988) · Zbl 0642.17016 · doi:10.1007/BF01229206
[104] Jimbo, M.; Kuniba, A.; Miwa, T.; Okado, M., The \({A}_n^{(1)}\) face models, Commun. Math. Phys., 119, 543 (1988) · Zbl 0667.17008 · doi:10.1007/BF01218344
[105] de Vega, HJ; Woynarovich, F., New integrable quantum chains combining different kinds of spins, J. Phys. A, 25, 4499 (1992) · Zbl 0764.35107 · doi:10.1088/0305-4470/25/17/012
[106] Bazhanov, VV; Kotousov, GA; Koval, SM; Lukyanov, SL, On the scaling behaviour of the alternating spin chain, JHEP, 08, 087 (2019) · Zbl 1421.81109 · doi:10.1007/JHEP08(2019)087
[107] Sirker, J.; Herzog, A.; Oleś, AM; Horsch, P., Thermally activated Peierls dimerization in ferromagnetic spin chains, Phys. Rev. Lett., 101, 157204 (2008) · doi:10.1103/PhysRevLett.101.157204
[108] Feyerherm, R.; Mathonière, C.; Kahn, O., Magnetic anisotropy and metamagnetic behaviour of the bimetallic chain MnNi(NO_2)_4(en)_2(en = ethylenediamine), J. Phys. Cond. Mat., 13, 2639 (2001) · doi:10.1088/0953-8984/13/11/319
[109] Southern, BW; Lee, RJ; Lavis, DA, Three-magnon excitations in ferromagnetic spin-S chains, J. Phys. Cond. Mat., 6, 10075 (1994) · doi:10.1088/0953-8984/6/46/024
[110] Southern, BW; Martínez Cuéllar, JL; Lavis, DA, Multimagnon excitations in alternating spin/bond chains, Phys. Rev. B, 58, 9156 (1998) · doi:10.1103/PhysRevB.58.9156
[111] Viswanath, V.; Müller, G., The recursion method (1994), Springer, Germany: Application to many-body dynamics, Springer, Germany · Zbl 0853.60087 · doi:10.1007/978-3-540-48651-0
[112] Huang, G.; Shi, Z-P; Dai, X.; Tao, R., Soliton excitations in the alternating ferromagnetic Heisenberg chain, Phys. Rev. B, 43, 11197 (1991) · doi:10.1103/PhysRevB.43.11197
[113] Sutherland, B., Beautiful models: 70 years of exactly solved quantum many-body problems (2004), Singapore: World Scientific, Singapore · Zbl 1140.82016 · doi:10.1142/5552
[114] Lamacraft, A., Diffractive scattering of three particles in one dimension: a simple result for weak violations of the Yang-Baxter equation, Phys. Rev. A, 87 (2013) · doi:10.1103/PhysRevA.87.012707
[115] Karabach, M.; Müller, G.; Gould, H.; Tobochnik, J., Introduction to the Bethe ansatz I, Comput. Phys., 11, 36 (1997) · doi:10.1063/1.4822511
[116] H. B. Thacker, Continuous space-time symmetries in a lattice field theory, hep-lat/9809141 [INSPIRE].
[117] De Leeuw, M.; Paletta, C.; Pribytok, A.; Retore, AL; Torrielli, A., Free Fermions, vertex Hamiltonians, and lower-dimensional AdS/CFT, JHEP, 02, 191 (2021) · Zbl 1460.81073 · doi:10.1007/JHEP02(2021)191
[118] N. Beisert, The analytic Bethe ansatz for a chain with centrally extended su(2|2) symmetry, J. Stat. Mech.01 (2007) P01017 [nlin/0610017]. · Zbl 1456.82226
[119] Arutyunov, G.; Frolov, S., On string S-matrix, bound states and TBA, JHEP, 12, 024 (2007) · Zbl 1246.81182 · doi:10.1088/1126-6708/2007/12/024
[120] Abramowitz, M.; Stegun, IA, Handbook of mathematical functions (1964), U.S.A: National Bureau of Standards, U.S.A · Zbl 0171.38503
[121] Kostov, I.; Serban, D.; Volin, D., Strong coupling limit of Bethe ansatz equations, Nucl. Phys. B, 789, 413 (2008) · Zbl 1151.81041 · doi:10.1016/j.nuclphysb.2007.06.017
[122] Beisert, N., The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys., 12, 945 (2008) · Zbl 1146.81047 · doi:10.4310/ATMP.2008.v12.n5.a1
[123] Seiberg, N.; Witten, E., String theory and noncommutative geometry, JHEP, 09, 032 (1999) · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[124] M. Kulaxizi, On β-deformations and noncommutativity, hep-th/0610310 [INSPIRE]. · Zbl 1325.81145
[125] M. Kulaxizi, Marginal deformations of N = 4 SYM and open vs. closed string parameters, Nucl. Phys. B887 (2014) 175 [hep-th/0612160] [INSPIRE]. · Zbl 1325.81145
[126] Caux, J-S; Mossel, J., Remarks on the notion of quantum integrability, J. Stat. Mech., 02 (2011)
[127] Beccaria, M.; Tseytlin, AA, 1/N expansion of circular Wilson loop in \(\mathcal{N} = 2\) superconformal SU(N) × SU(N) quiver, JHEP, 04, 265 (2021) · Zbl 1462.81182 · doi:10.1007/JHEP04(2021)265
[128] F. Galvagno and M. Preti, Wilson loop correlators in \(\mathcal{N} = 2\) superconformal quivers, arXiv:2105.00257 [INSPIRE]. · Zbl 1466.81122
[129] Galvagno, F.; Preti, M., Chiral correlators in \(\mathcal{N} = 2\) superconformal quivers, JHEP, 05, 201 (2021) · Zbl 1466.81122 · doi:10.1007/JHEP05(2021)201
[130] Zarembo, K., Quiver CFT at strong coupling, JHEP, 06, 055 (2020) · Zbl 1437.81084 · doi:10.1007/JHEP06(2020)055
[131] V. Niarchos, C. Papageorgakis, A. Pini and E. Pomoni, (Mis-)matching type-B anomalies on the Higgs branch, JHEP01 (2021) 106 [arXiv:2009.08375] [INSPIRE].
[132] Niarchos, V.; Papageorgakis, C.; Pomoni, E., Type-B anomaly matching and the 6D (2, 0) theory, JHEP, 04, 048 (2020) · Zbl 1436.83089 · doi:10.1007/JHEP04(2020)048
[133] Mitev, V.; Pomoni, E., Exact Bremsstrahlung and effective couplings, JHEP, 06, 078 (2016) · Zbl 1388.81866 · doi:10.1007/JHEP06(2016)078
[134] Mitev, V.; Pomoni, E., Exact effective couplings of four dimensional gauge theories with \(\mathcal{N} = 2\) supersymmetry, Phys. Rev. D, 92, 125034 (2015) · doi:10.1103/PhysRevD.92.125034
[135] Bazhanov, VV; Reshetikhin, NY, Critical Rsos models and conformal field theory, Int. J. Mod. Phys. A, 4, 115 (1989) · Zbl 0693.58046 · doi:10.1142/S0217751X89000042
[136] H. Saleur and N. P. Warner, Lattice models and N = 2 supersymmetry, hep-th/9311138 [INSPIRE]. · Zbl 0857.17030
[137] Read, N.; Saleur, H., Exact spectra of conformal supersymmetric nonlinear sigma models in two-dimensions, Nucl. Phys. B, 613, 409 (2001) · Zbl 0972.81087 · doi:10.1016/S0550-3213(01)00395-9
[138] M. Staudacher, Review of AdS/CFT integrability, chapter III.1: Bethe Ansätze and the R-matrix formalism, Lett. Math. Phys.99 (2012) 191 [arXiv:1012.3990] [INSPIRE]. · Zbl 1242.82015
[139] Jones, RB, Baxter’s quantum number in the XY model, J. Phys. A, 7, 280 (1974) · doi:10.1088/0305-4470/7/2/013
[140] R. J. Baxter, Eight vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. 1. Some fundamental eigenvectors, Annals Phys.76 (1973) 1 [INSPIRE]. · Zbl 1092.82511
[141] Levy-Bencheton, D.; Terras, V., An algebraic Bethe ansatz approach to form factors and correlation functions of the cyclic eight-vertex solid-on-solid model, J. Stat. Mech., 04 (2013) · Zbl 1456.82286 · doi:10.1088/1742-5468/2013/04/P04015
[142] Faddeev, LD, Algebraic aspects of Bethe Ansatz, Int. J. Mod. Phys. A, 10, 1845 (1995) · Zbl 1044.82535 · doi:10.1142/S0217751X95000905
[143] Nepomechie, RI, A spin chain primer, Int. J. Mod. Phys. B, 13, 2973 (1999) · Zbl 1229.82001 · doi:10.1142/S0217979299002800
[144] Levkovich-Maslyuk, F., The Bethe ansatz, J. Phys. A, 49, 323004 (2016) · Zbl 1352.82007 · doi:10.1088/1751-8113/49/32/323004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.