Shang Hsu, Yang A hierarchically enhanced recovery-based error estimator for bidimensional elastoplastic modelling by generalized finite element approach. (English) Zbl 1476.74145 Acta Mech. 232, No. 3, 881-906 (2021). Summary: This paper aims to contribute with a hierarchically enhanced recovery-based error estimator by using the Zienkiewicz-Zhu (ZZ) recovery procedure and a generalized finite element formulation. The proposed stress recovery consists in an approximation procedure that is enriched hierarchically by using partition of unity (PU) and an enrichment function. In other words, the approximation matrix used for stress field recovery employs the enriched finite element (FE) shape function. Furthermore, the edge-bubble hierarchically enriched strategy in the context of a generalized finite element approach is adopted to develop the enriched \(\mathrm{C}^0\) element and approximation the matrix. The error estimator based on this hierarchically enhanced recovery procedure and the generalized finite element approach is employed to solve several elastic and elastoplastic hardening benchmark problems. Moreover, the effectivity index, refinement index, recovered stress field, global error and local error, both in energy norm, are evaluated in several applications. In addition, the sensitivity of the proposed recovery procedure to a severely distorted mesh is also analysed. The results obtained by the proposed procedure is compared to other well-established recovery procedures and finite element approaches. By comparing the results, the robustness in the numerical performance, the versatility in the computational implementation and the competitivity of the proposed procedure are demonstrated in the applications. MSC: 74S05 Finite element methods applied to problems in solid mechanics 74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials) Keywords:Zienkiewicz-Zhu stress recovery procedure; partition of unity technique; enrichment function; edge-bubble strategy Software:XFEM; FEAPpv PDF BibTeX XML Cite \textit{Y. Shang Hsu}, Acta Mech. 232, No. 3, 881--906 (2021; Zbl 1476.74145) Full Text: DOI OpenURL References: [1] Alberty, J.; Carstensen, C.; Zarrabi, D., Adaptive numerical analysis in primal elastoplasticity with hardening, Comput. Methods Appl. Mech. Eng., 171, 175-204 (1999) · Zbl 0956.74049 [2] Allendes, A.; Otárola, E.; Rankin, R., A posteriori error estimators for stabilized finite element approximations of an optimal control problem, Comput. Methods Appl. Mech. Eng., 340, 147-177 (2018) · Zbl 1440.49035 [3] Anitescu, C.; Hossain, MN; Rabczuk, T., Recovery-based error estimation and adaptivity using high-order splines over hierarchical T-meshes, Comput. Methods Appl. Mech. Eng., 328, 638-662 (2018) · Zbl 1439.65011 [4] Augarde, CE; Deeks, AJ, The use of Timoshenko’s exact solution for a cantilever beam in adaptive analysis, Finite Elem. Anal. Des., 44, 595-601 (2008) [5] Barros, FB; Proença, SPB; Barcellos, CS, On error estimator and \(p\)-adaptivity in the generalized finite element method, Int. J. Numer. Methods Eng., 60, 2373-2398 (2004) · Zbl 1075.74634 [6] Barros, FB; Proença, SPB; Barcellos, CS, Generalized finite element method in structural nonlinear analysis—a \(p\)-adaptive strategy, Comput. Mech., 33, 95-107 (2004) · Zbl 1067.74063 [7] Barros, FB; Barcellos, CS; Duarte, CA; Torres, DAF, Subdomain-based error techniques for generalized finite element approximations of problems with singular stress fields, Comput. Mech., 52, 1395-1415 (2013) · Zbl 1398.74299 [8] Bathe, KJ, Finite Element Procedure (1996), Upper Saddle River: Prentice-Hall, Upper Saddle River [9] Belytschko, T.; Fries, TP, The extended/generalized finite element method: an overview of the method and its applications, Int. J. Numer. Methods Eng., 84, 253-304 (2010) · Zbl 1202.74169 [10] Benedetti, A.; Miranda, S.; Ubertini, F., A posteriori error estimation based on the superconvergent recovery by compatibility in patches, Int. J. Numer. Methods Eng., 67, 108-131 (2006) · Zbl 1110.74843 [11] Bordas, S.; Duflot, M., Derivative recovery and a posteriori error estimate for extended finite elements, Comput. Methods Appl. Mech. Eng., 196, 3381-3399 (2007) · Zbl 1173.74401 [12] Bordas, SPA; Rabczuk, T.; Hung, NX; Nguyen, VP; Natarajan, S.; Bog, T.; Quan, DM; Hiep, NV, Strain smoothing in FEM and XFEM, Comput. Struct., 88, 1419-1443 (2010) [13] Boroomand, B.; Zienkiewicz, OC, Recovery by equilibrium in patches (REP), Int. J. Numer Methods Eng., 40, 137-164 (1997) [14] Boroomand, B.; Zienkiewicz, OC, Recovery procedures in error estimation and adaptivity. Part II: adaptivity in nonlinear problems of elasto-plasticity behavior, Comput. Methods Appl. Mech. Eng., 176, 127-146 (1999) · Zbl 0955.74070 [15] Boroomand, B.; Ghaffarian, M.; Zienkiewicz, OC, On application of two superconvergent recovery procedures to plate problems, Int. J. Numer. Methods Eng., 61, 1644-1673 (2004) · Zbl 1075.74636 [16] Bucher, A.; Meyer, A.; Görke, UJ; Kreißig, R., A contribution to error estimation and mapping algorithms for a hierarchical adaptive FE-strategy in finite elastoplasticity, Comput. Mech., 36, 182-195 (2005) · Zbl 1138.74389 [17] Bucher, A.; Meyer, A.; Görke, UJ; Kreißig, R., A comparison of mapping algorithms for hierarchical adaptive FEM in finite elasto-plasticity, Comput. Mech., 39, 521-536 (2007) · Zbl 1166.74033 [18] Cai, Z.; Cao, S.; Falgout, R., Robust a posteriori error estimation for finite element approximation to H (curl) problem, Comput. Methods Appl. Mech. Eng., 309, 182-201 (2016) · Zbl 1439.78019 [19] Cai, Z.; He, C.; Zhang, S., Improved ZZ a-posteriori error estimators for diffusion problems: conforming linear elements, Comput. Methods Appl. Mech. Eng., 313, 433-449 (2017) · Zbl 1439.65153 [20] Çalik-Karaköse, ÜH; Askes, H., A recovery-type a posteriori error estimator for gradient elasticity, Comput. Struct., 154, 204-209 (2015) [21] Castellazzi, G.; Miranda, S.; Ubertini, F., Adaptivity based on the recovery by compatibility in patches, Finite Elem. Anal. Des., 46, 379-390 (2010) · Zbl 1398.74313 [22] Castellazzi, G.; Miranda, S.; Ubertini, F., Patch based stress recovery for plate structures, Comput. Mech., 47, 379-394 (2011) · Zbl 1398.74313 [23] Cen, S.; Zhou, GH; Fu, XR, A shape-free 8-node plane element unsymmetric analytical trial function method, Int. J. Numer. Methods Eng., 91, 158-185 (2012) · Zbl 1246.74057 [24] Daghia, F.; Miranda, S.; Ubertini, F., Patch based recovery in finite element elastoplastic analysis, Comput. Mech., 52, 827-836 (2013) · Zbl 1311.74116 [25] Duarte, CA; Oden, JT, An hp adaptive method using clouds, Comput. Methods Appl. Mech. Eng., 139, 237-262 (1996) · Zbl 0918.73328 [26] Gerasimov, T.; Rüter, M.; Stein, E., An explicit residual-type error estimator for Q1-quadrilateral extended finite element method in two-dimensional linear elastic fracture mechanics, Int. J. Numer. Methods Eng., 90, 1118-1155 (2012) · Zbl 1242.74118 [27] González-Estrada, OA; Natarajan, S.; Ródenas, JJ; Nguyen-Xuan, H.; Bordas, SPA, Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity, Comput. Mech., 52, 37-52 (2013) · Zbl 1308.74025 [28] González-Estrada, OA; Ródenas, JJ; Bordas, SPA; Nadal, E.; Kerfriden, P.; Fuenmayor, FJ, Locally equilibrated stress recovery for goal-oriented error estimation in the extended finite element method, Comput. Struct., 152, 1-10 (2015) [29] Grätsch, T.; Bathe, KJ, A posteriori error estimation techniques in practical finite element analysis, Comput. Struct., 83, 235-265 (2005) [30] Hsu, YS, Enriched finite element methods for Timoshenko beam free vibration analysis, Appl. Math. Model., 40, 7012-7033 (2016) · Zbl 1471.74027 [31] Huerta, A.; Díez, P., Implicit residual type error estimators. Springer Briefs in Applied Sciences and Technology (2015), Cham: Springer, Cham [32] Idesman, A., A new exact, closed-form a priori global error estimator for second- and higher-order time-integration methods for linear elastodynamics, Int. J. Numer. Methods Eng., 88, 1066-1084 (2011) · Zbl 1242.74188 [33] Jansari, C.; Natarajan, S.; Beex, L.; Kannan, K., Adaptive smoothed stable extended finite element method for weak discontinuities for finite elasticity, Eur. J. Mech. A Solids, 78, 103824 (2019) · Zbl 1473.74134 [34] Jumar, M.; Kvamsdal, T.; Johannessen, KA, Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis, Comput. Methods Appl. Mech. Eng., 316, 1086-1156 (2017) · Zbl 1439.74437 [35] Ju, X.; Mahnken, R., Goal-oriented h-type adaptive finite elements for micromorphic elastoplasticiy, Comput. Methods Appl. Mech. Eng., 351, 297-329 (2019) · Zbl 1441.74249 [36] Ladevèze, P., Constitutive relation error estimators for time-dependent non-linear FE analysis, Comput. Methods Appl. Mech. Eng., 188, 775-788 (2000) · Zbl 0962.74064 [37] Lins, RM; Ferreira, MDC; Proença, SPB; Duarte, CA, An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method, Comput. Mech., 56, 947-965 (2015) · Zbl 1336.74067 [38] Lins, RM; Proença, SPB; Duarte, CA, Efficient and accurate stress recovery procedure and a-posteriori error estimator for the stable generalized/extended finite element method, Int. J. Numer. Methods Eng., 119, 1279-1306 (2019) [39] Lubliner, J., Plasticity Theory (2008), Mineola, New York: Dover Publications, Mineola, New York · Zbl 1201.74002 [40] Mohite, PM; Upadhyay, CS, A generalized adaptive finite element analysis of laminated plates, Comput. Struct., 112-113, 217-234 (2012) [41] Mota, A.; Abel, JF, On mixed finite element formulations and stress recovery techniques, Int. J. Numer. Methods Eng., 47, 191-204 (2000) · Zbl 0988.74066 [42] Oh, HS; Batra, RC, Application of Zienkiewicz-Zhu’s error estimate with superconvergent patch recovery to hierarchical \(p\)-refinement, Finite Elem. Anal. Des., 31, 273-280 (1999) · Zbl 0923.73065 [43] Payen, DJ; Bathe, KJ, The use of nodal point forces to improve element stresses, Comput. Struct., 89, 485-495 (2011) [44] Payen, DJ; Bathe, KJ, Improved stresses for the 4-node tetrahedral element, Comput. Struct., 89, 1265-1273 (2011) [45] Payen, DJ; Bathe, KJ, A stress improvement procedure, Comput. Struct., 112-113, 311-326 (2012) [46] Prange, C.; Loehnert, S.; Wriggers, P., Error estimation for crack simulations using the XFEM, Int J. Numer. Methods Eng., 91, 1459-1474 (2012) [47] Prudhomme, S.; Nobile, F.; Chamoin, L.; Oden, JT, Analysis of a subdomain-based error estimator for finite element approximations of elliptic problems, Numer. Methods Partial Differ. Equ., 20, 165-192 (2004) · Zbl 1049.65123 [48] Rabczuk, T.; Belytschko, T., A three-dimensional large deformation meshfree method for arbitrary evolving cracks, Comput. Methods Appl. Mech. Eng., 196, 2777-2799 (2007) · Zbl 1128.74051 [49] Rabczuk, T.; Areias, PMA; Belytschko, T., A meshfree shin shell method for non-linear dynamic fracture, Int. J. Numer. Methods Eng., 72, 524-548 (2007) · Zbl 1194.74537 [50] Ródenas, JJ; González-Estrada, OA; Díez, P.; Fuenmayor, FJ, Accurate recovery-based upper error bounds for the extended finite element framework, Comput. Methods Appl. Mech. Eng., 199, 2607-2621 (2010) · Zbl 1231.74437 [51] Ródenas, JJ; González-Estrada, OA; Fuenmayor, FJ; Chinesta, F., Enhanced error estimator based on a nearly equilibrated moving least squares recovery techniques for FEM and XFEM, Comput. Mech., 52, 321-344 (2013) · Zbl 1398.74396 [52] Romero, I.; Lacoma, LM, Analysis of error estimators for the semidiscrete equations of linear solid and structural dynamics, Comput. Methods Appl. Mech. Eng., 195, 2674-2696 (2006) · Zbl 1118.74053 [53] Rüter, M.; Gerasimov, T.; Stein, E., Goal-oriented explicit residual-type error estimates in XFEM, Comput. Mech., 52, 361-376 (2013) · Zbl 1398.74397 [54] Sanchez-Rivadeneira, AG; Duarte, CA, A stable generalized/extended FEM with discontinuous interpolants for fracture mechanics, Comput. Methods Appl. Mech. Eng., 345, 876-918 (2019) · Zbl 1440.74438 [55] Sanchez-Rivadeneira, AG; Shauer, N.; Mazurowski, B.; Duarte, CA, A stable generalized/extended \(p\)-hierarchical FEM for three-dimensional linear elastic fracture mechanics, Comput. Methods Appl. Mech. Eng., 364, 112970 (2020) · Zbl 1442.74237 [56] Segeth, K., A review of some a posteriori error estimates for adaptive finite element methods, Math. Comput. Simul., 80, 1589-1600 (2010) · Zbl 1196.65173 [57] Shang, HY; Machado, RD; Abdalla Filho, JE, Dynamic analysis of Euler-Bernoulli beam problems using the generalized finite element method, Comput. Struct., 173, 109-122 (2016) [58] Shang, HY; Machado, RD; Abdalla Filho, JE; Arndt, M., Numerical analysis of plane stress free vibration in severely distorted mesh by generalized finite element method, Eur. J. Mech. A Solids, 62, 50-66 (2017) · Zbl 1406.74646 [59] Shang, HY; Machado, RD; Abdalla Filho, JE, On the performance of GFEM with trigonometric enrichment in bidimensional dynamic elastoplastic modelling, Eur. J. Mech. A Solids, 73, 512-527 (2019) · Zbl 1406.74645 [60] Stephen, DB; Steven, GP, Error estimation for natural frequency finite element analysis, Finite Elem. Anal. Des., 26, 21-40 (1997) · Zbl 0914.73066 [61] Strouboulis, T.; Zhang, L.; Wang, D.; Babuska, I., A posteriori error estimation for generalized finite element methods, Comput. Methods Appl. Mech. Eng., 195, 852-879 (2006) · Zbl 1119.65111 [62] Thoi, TN; Vu-Do, HC; Rabczuk, T.; Xuan, HN, A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes, Comput. Methods Appl. Mech. Eng., 199, 3005-3027 (2010) · Zbl 1231.74432 [63] Timoshenko, S.; Goodier, JN, Theory of Elasticity (1951), New York: McGraw-Hill Book Company, New York · Zbl 0045.26402 [64] Ubertini, F., Patch recovery based on complementary energy, Int. J. Numer. Methods Eng., 59, 1501-1538 (2004) · Zbl 1041.74549 [65] Verdugo, F.; Parés, N.; Díez, P., Error assessment in structural transient dynamics, Arch. Comput. Methods Eng., 21, 59-90 (2014) · Zbl 1354.74304 [66] Yu, T.; Bui, TQ, Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on XFEM with local mesh refinement, Comput. Struct., 196, 112-133 (2018) [67] Wang, H.; Yang, W.; Huang, Y., Adaptive finite element method for the sound wave problems in two kinds of media, Comput. Math. Appl., 79, 789-801 (2020) · Zbl 1443.65224 [68] Yang, ZJ; Zhang, ZH; Liu, GH; Ooi, ET, An h-hierarchical adaptive scaled boundary finite element method for elastodynamics, Comput. Struct., 89, 1417-149 (2011) [69] Zhang, Z.; Naga, A., Validation of the a-posteriori error estimator based on polynomial preserving recovery for linear elements, Int. J. Numer. Methods Eng., 61, 1860-1893 (2004) · Zbl 1081.65103 [70] Zhao, C.; Steven, GP, A practical error estimator for finite element predicted natural frequencies of membrane vibration problems, J. Sound Vib., 195, 739-756 (1996) · Zbl 1235.74329 [71] Zienkiewicz, OC; Taylor, RL, The Finite Element Method for Solid and Structural Mechanics (2005), Amsterdam: Elsevier, Amsterdam · Zbl 1084.74001 [72] Zienkiewicz, OC; Zhu, JZ, A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Methods Eng., 24, 337-357 (1987) · Zbl 0602.73063 [73] Zienkiewicz, OC; Zhu, JZ, The superconvergent patch recovery (SPR) and adaptive finite element refinement, Comput. Methods Appl. Mech. Eng., 101, 207-224 (1992) · Zbl 0779.73078 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.