×

Classification of nonsemicommutative rings. (English) Zbl 1488.16083

The authors determine the relationships among seven classes of rings. Let \(R\) be a unitary ring and \(N(R)\) its set of nilpotent elements. \(R\) is semicommutative (SC) if \(ab=0\) implies \(aRb=0\); 2-primal (\(2\)-\(P\)) if \(N(R)\) is the lower nil-radical; \(PS\)-\(1\) if \(R/\text{Ann}(a)\) is \(2\)-\(P\) for all \(a\); weakly 2-primal (\(W 2\)-\(P\)) if \(N(R)\) is the Levitzki radical; \(NI\) if \(N(R)\) is the upper nil radical; \(NR\) if \(N(R)\) is a non-unitary subring of \(R\); and Dedekind finite \((DF)\) if \(ab=1\) implies \(ba=1\). It is known that \[SC\subseteq PS\text{-}1\subseteq 2\text{-}P\subseteq W 2\text{-}P\subseteq NI\subseteq NR\subseteq DF.\] In this paper, the authors show by ingenious examples that all the inclusions are strict. They find examples in which \(R\) is reflexive (\(aRb=0\) implies \(bRa=0\)) or abelian (all idempotents are central).

MSC:

16S99 Associative rings and algebras arising under various constructions
16W99 Associative rings and algebras with additional structure
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ánh, PN; Birkenmeier, GF; van Wyk, L., Idempotents and structures of rings, Linear Multilinear Algebra, 64, 2002-2029 (2016) · Zbl 1376.16023 · doi:10.1080/03081087.2015.1134429
[2] Antoine, R., Nilpotent elements and armendariz rings, J. Algebra, 319, 3128-3140 (2008) · Zbl 1157.16007 · doi:10.1016/j.jalgebra.2008.01.019
[3] Baer, R., Radical ideals, Amer. J. Math., 65, 537-568 (1943) · Zbl 0060.07104 · doi:10.2307/2371865
[4] G. Birkenmeier, H. Heatherly, and E. Lee, Completely prime ideals and radicals in near-rings, in Near-rings and Near-fields (Fredericton, NB, 1993), Math. Appl., vol. 336, Kluwer Acad. Publ. (Dordrecht, 1995), pp. 63-73 · Zbl 0839.16040
[5] Birkenmeier, GF; Kim, JY; Park, JK, Regularity conditions and the simplicity of prime factor rings, J. Pure Appl. Algebra, 115, 213-230 (1997) · Zbl 0870.16006 · doi:10.1016/S0022-4049(96)00011-4
[6] Chen, W-X; Cui, S-Y, On weakly semicommutative rings, Commun. Math. Res., 27, 179-192 (2011) · Zbl 1249.16041
[7] H. Chimal-Dzul, S. López-Permouth, and S. Szabo, Characterizations of some classes of morita context rings, Comm. Algebra, (2021) · Zbl 1496.16032
[8] H. Chimal-Dzul and S. Szabo, Minimal reflexive nonsemicommutative rings, J. Algebra Appl., (2020)
[9] Chun, Y.; Jeon, YC; Kang, S.; Lee, KN; Lee, Y., A concept unifying the Armendariz and NI conditions, Bull. Korean Math. Soc., 48, 115-127 (2011) · Zbl 1214.16021 · doi:10.4134/BKMS.2011.48.1.115
[10] N. Divinsky, Rings and Radicals, Mathematical Expositions, No. 14, University of Toronto Press (Toronto, Ont., 1965) · Zbl 0138.26303
[11] Fischer, I.; Struik, RR, Nil algebras and periodic groups, Amer. Math. Monthly, 75, 611-623 (1968) · Zbl 0174.32802 · doi:10.1080/00029890.1968.11971038
[12] B. J. Gardner and R. Wiegandt, Radical Theory of Rings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 261, Marcel Dekker, Inc. (New York, 2004) · Zbl 1034.16025
[13] Golod, ES, On nil-algebras and finitely approximable \(p\)-groups, Izv. Akad. Nauk SSSR Ser. Mat., 28, 273-276 (1964)
[14] Golod, ES; Šafarevič, IR, On the class field tower, Izv. Akad. Nauk SSSR Ser. Mat., 28, 261-272 (1964) · Zbl 0136.02602
[15] Hong, CY; Kim, HK; Kim, NK; Kwak, TK; Lee, Y.; Park, KS, Rings whose nilpotent elements form a Levitzki radical ring, Comm. Algebra, 35, 1379-1390 (2007) · Zbl 1121.16021 · doi:10.1080/00927870601117597
[16] Hwang, SU; Jeon, YC; Lee, Y., Structure and topological conditions of NI rings, J. Algebra, 302, 186-199 (2006) · Zbl 1104.16015 · doi:10.1016/j.jalgebra.2006.02.032
[17] P. Krylov and A. Tuganbaev, Formal Matrices, Algebra and Applications, vol. 23, Springer (Cham, 2017) · Zbl 1367.16001
[18] Kwak, TK; Lee, Y., Reflexive property of rings, Comm. Algebra, 40, 1576-1594 (2012) · Zbl 1252.16033 · doi:10.1080/00927872.2011.554474
[19] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag (New York, 1999) · Zbl 0911.16001
[20] T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, vol. 131, 2nd ed., Springer-Verlag (New York, 2001) · Zbl 0980.16001
[21] Lee, T-K; Wong, T-L, On Armendariz rings, Houston J. Math., 29, 583-593 (2003) · Zbl 1071.16015
[22] Marks, G., Skew polynomial rings over \(2\)-primal rings, Comm. Algebra, 27, 4411-4423 (1999) · Zbl 0957.16019 · doi:10.1080/00927879908826705
[23] Marks, G., On 2-primal Ore extensions, Comm. Algebra, 29, 2113-2123 (2001) · Zbl 1005.16027 · doi:10.1081/AGB-100002173
[24] Marks, G., A taxonomy of 2-primal rings, J. Algebra, 266, 494-520 (2003) · Zbl 1045.16001 · doi:10.1016/S0021-8693(03)00301-6
[25] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Graduate Studies in Mathematics, vol. 30, revised ed. with the cooperation of L. W. Small, American Mathematical Society (Providence, RI, 2001) · Zbl 0980.16019
[26] Ram, J., On the semisimplicity of skew polynomial rings, Proc. Amer. Math. Soc., 90, 347-351 (1984) · Zbl 0535.16002 · doi:10.1090/S0002-9939-1984-0728345-7
[27] Smoktunowicz, A., A simple nil ring exists, Comm. Algebra, 30, 27-59 (2002) · Zbl 1005.16021 · doi:10.1081/AGB-120006478
[28] Šter, J., Rings in which nilpotents form a subring, Carpathian J. Math., 36, 251-258 (2016) · Zbl 1399.16043 · doi:10.37193/CJM.2016.02.13
[29] Szabo, S., Minimal reversible nonsymmetric rings, J. Pure Appl. Algebra, 223, 4583-4591 (2019) · Zbl 1412.16012 · doi:10.1016/j.jpaa.2019.02.005
[30] Szabo, S., Some minimal rings related to 2-primal rings, Comm. Algebra, 47, 1287-1298 (2019) · Zbl 1456.16018 · doi:10.1080/00927872.2018.1503284
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.