Semi-isometric CR immersions of CR manifolds into Kähler manifolds and applications. (English) Zbl 07417794

Summary: We study the second fundamental form of semi-isometric CR immersions from strictly pseudoconvex CR manifolds into Kähler manifolds. As an application, we give a precise condition for the CR umbilicality of real hypersurfaces, extending an well-known theorem by Webster on the nonexistence of CR umbilical points on generic real ellipsoids. As other applications, we extend the linearity theorem of Ji-Yuan for CR immersions into spheres with vanishing second fundamental form to the important case of three-dimensional manifolds, and prove the “first gap” theorem in the spirit of Webster, Faran, Cima-Suffridge, and Huang for semi-isometric CR immersions into a complex Euclidean space of “low” codimension. Our new approach to the linearity theorem is based on the study of the first positive eigenvalue of the Kohn Laplacian.


32W10 \(\overline\partial_b\) and \(\overline\partial_b\)-Neumann operators
32V20 Analysis on CR manifolds
32V40 Real submanifolds in complex manifolds
Full Text: DOI arXiv


[1] R. BEALS and P. C. GREINER, “Calculus on Heisenberg Manifolds”, Annals of Mathemat-ics Studies, Vol. 119. Princeton University Press, Princeton, NJ, 1988. · Zbl 0654.58033
[2] E. BEDFORD and P. FEDERBUSH, Pluriharmonic boundary values, Tôhoku Math. J. (Sec-ond Series) 26 (1974), 505-511. · Zbl 0298.31012
[3] D. M. BURNS and C. L. EPSTEIN, Embeddability for three-dimensional CR-manifolds, J. Amer. Math. Soc. 3 (1990), 809-841. · Zbl 0736.32017
[4] S. CHANILLO, H.-L. CHIU and P. YANG, Embeddability for 3-dimensional Cauchy-Riemann manifolds and CR Yamabe invariants, Duke Math. J. 161 (2012), 2909-2921. · Zbl 1271.32040
[5] J.-H. CHENG and J. M. LEE, The Burns-Epstein invariant and deformation of CR struc-tures, Duke Math. J. 60 (1990), 221-254. · Zbl 0704.53028
[6] S.-S. CHERN and J. K. MOSER, Real hypersurfaces in complex manifolds, Acta Math. (1974) 133 (1974), 219-271. · Zbl 0302.32015
[7] J. A. CIMA and T. J. SUFFRIDGE, A reflection principle with applications to proper holo-morphic mappings, Math. Ann. 265 (1983), 489-500. · Zbl 0525.32021
[8] J. P. D’ANGELO, “Several Complex Variables and the Geometry of Real Hypersurfaces”, Studies in Advanced in Mathematics, Vol. 8, CRC Press, Boca Raton, FL, 1993. · Zbl 0854.32001
[9] S. DRAGOMIR, On pseudohermitian immersions between strictly pseudoconvex CR mani-folds, Amer. J. Math. 117 (1995), 169-202. · Zbl 0827.32020
[10] S. DRAGOMIR and G. TOMASSINI, “Differential Geometry and Analysis on CR Mani-folds”, Progress in Mathematics, Vol. 246, Birkhäuser, Boston, 2006. · Zbl 1099.32008
[11] P. EBENFELT, X. HUANG and D. ZAITSEV, Rigidity of CR-immersions into spheres, Comm. Anal. Geom. 12 (2004), 631-670. · Zbl 1066.32033
[12] P. EBENFELT and D. N. SON, Umbilical points on three dimensional strictly pseudoconvex CR manifolds I: manifolds with U (1)-action, Math. Ann. 368 (2017), 537-560. · Zbl 1375.32056
[13] P. EBENFELT, D. N. SON and D. ZAITSEV, A family of compact strictly pseudoconvex hypersurfaces in C 2 without umbilical points, Math. Res. Lett. 25 (2018) 75-84. · Zbl 1408.32033
[14] J. J. FARAN, The linearity of proper holomorphic maps between balls in the low codimen-sion case, J. Differential Geom. 24 (1986), 15-17. · Zbl 0592.32018
[15] J. J. FARAN, The nonimbeddability of real hypersurfaces in spheres, Proc. Amer. Math. Soc. 103 (1988), 902-904. · Zbl 0656.32015
[16] S. GALLOT, D. HULIN and J. LAFONTAINE, “Riemannian Geometry”, Universitext, Springer-Verlag, Berlin, third edition, 2004. · Zbl 0636.53001
[17] C. R. GRAHAM and J. M. LEE, Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke Math. J. 57 (1988), 697-720. · Zbl 0699.35112
[18] X. HUANG, On a linearity problem for proper holomorphic maps between balls in complex spaces of different dimensions, J. Differential Geom. 51 (1999), 13-33. · Zbl 1042.32008
[19] X. HUANG and S. JI, Every real ellipsoid in C 2 admits CR umbilical points, Trans. Amer. Math. Soc. 359 (2007), 1191-1204. · Zbl 1122.32027
[20] S. JI and Y. YUAN, Flatness of CR submanifolds in a sphere, Sci. China Math. 53 (2010) 701-718. · Zbl 1204.32024
[21] J. M. LEE, Pseudo-Einstein structures on CR manifolds, Amer. J. Math. 110 (1988), 157-178. · Zbl 0638.32019
[22] J. M. LEE and R. MELROSE, Boundary behavior of the complex Monge-Ampère equation, Acta math. 148 (1982), 159-192. · Zbl 0496.35042
[23] S.-Y. LI, G.-J. LIN and D. N. SON, The sharp upper bounds for the first positive eigenvalue of the Kohn-Laplacian on compact strictly pseudoconvex hypersurfaces, Math. Z. 288 (2018), 949-963. · Zbl 1396.32017
[24] S.-Y. LI and H.-S. LUK, An explicit formula for the Webster pseudo-Ricci curvature on real hypersurfaces and its application for characterizing balls in C n , Comm. Anal. Geom. 14 (2006), 673-701. · Zbl 1113.32008
[25] S.-Y. LI and D. N. SON, CR-Analogue of Siu-@@-formula and applications to rigidity prob-lem for pseudo-hermitian harmonic maps, Proc. Amer. Math. Soc. 147 (2019), 5141-5151. · Zbl 1429.32037
[26] S.-Y. LI and D. N. SON, The Webster scalar curvature and sharp upper and lower bounds for the first positive eigenvalue of the Kohn-Laplacian on real hypersurfaces, Acta Math. Sin. (Engl. Ser.) 34 (2018), 1248-1258. · Zbl 1404.32071
[27] S.-Y. LI, D. N. SON and X. WANG, A new characterization of the CR sphere and the sharp eigenvalue estimate for the Kohn Laplacian, Adv. Math. 281 (2015), 1285-1305. · Zbl 1319.53032
[28] T. TAKAHASHI, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385. · Zbl 0145.18601
[29] N. TANAKA, “A Differential Geometric Study on Strongly Pseudoconvex Manifolds”, Lec-tures in mathematics, Vol. 9, Kinokuniya Book-store Co., Tokyo 1975. · Zbl 0331.53025
[30] X. WANG, On a remarkable formula of Jerison and Lee in CR geometry, Math. Res. Lett. 22 (2015), 279-299. · Zbl 1320.32040
[31] S. M. WEBSTER, Pseudo-hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), 25-41. · Zbl 0379.53016
[32] S. M. WEBSTER, The rigidity of CR hypersurfaces in a sphere, Indiana Univ. Math. J. 28 (1979), 405-416. · Zbl 0387.53020
[33] S. M. WEBSTER, Holomorphic differential invariants for an ellipsoidal real hypersurface, Duke Math. J. 104 (2000), 463-475. · Zbl 0971.32019
[34] Wien, Austria son.duong@univie.ac.at
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.