×

Positive steady states of a SI epidemic model with cross diffusion. (English) Zbl 1510.92226

Summary: We propose a spatiotemporal SI epidemic model with cross diffusion. The cross diffusion term is proposed for the first time in literature and through our analysis we have confirmed that coexistence of the participating species is possible under its influence. We study the model using coupled upper and lower solutions for an elliptic partial differential equations with Dirichlet boundary conditions. We derive sufficient conditions for the coexistence of the susceptible and infected populations. Mathematical analysis is performed to prove that at least one coexistence state will exist for the proposed model system. We further proved that the system exhibits Turing instability in the presence of the proposed cross diffusion and carried out numerical simulation to observe the patterning behavior. This work provides a significant insight on how epidemic models can be influenced by cross diffusion effects.

MSC:

92D30 Epidemiology
35B35 Stability in context of PDEs
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C15 Developmental biology, pattern formation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Sun, G.-Q., Pattern formation of an epidemic model with diffusion, Nonlinear Dyn, 69, 3, 1097-1104 (2012)
[2] Simon, C. P.; Jacquez, J. A., Reproduction numbers and the stability of equilibria of si models for heterogeneous populations, SIAM J Appl Math, 52, 2, 541-576 (1992) · Zbl 0765.92019
[3] Brauer, F., Infectious disease models with chronological age structure and epidemiological age structure, Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, 231-243 (2002), Springer · Zbl 1022.92027
[4] Brauer, F., A model for an si disease in an age-structured population, Discrete & Continuous Dynamical Systems-B, 2, 2, 257 (2002) · Zbl 0994.92033
[5] Zhang, T.; Meng, X.; Song, Y.; Zhang, T., A stage-structured predator-prey si model with disease in the prey and impulsive effects, Mathematical Modelling and Analysis, 18, 4, 505-528 (2013) · Zbl 1285.34073
[6] Turing, A. M., The chemical basis of morphogenesis, Bull. Math. Biol., 52, 1, 153-197 (1990)
[7] Iron, D.; Ward, M. J.; Wei, J., The stability of spike solutions to the one-dimensional gierer-meinhardt model, Physica D, 150, 1-2, 25-62 (2001) · Zbl 0983.35020
[8] Davidson, F.; Rynne, B., A priori bounds and global existence of solutions of the steady-state sel’kov model, Proceedings of the Royal Society of Edinburgh-A-Mathematics, 130, 507-516 (2000), Citeseer · Zbl 0960.35026
[9] Lin, C.-S.; Ni, W.-M.; Takagi, I., Large amplitude stationary solutions to a chemotaxis system, J Differ Equ, 72, 1, 1-27 (1988) · Zbl 0676.35030
[10] Zhou, J.; Mu, C., Pattern formation of a coupled two-cell brusselator model, J Math Anal Appl, 366, 2, 679-693 (2010) · Zbl 1195.35292
[11] Anita, S.; Capasso, V., A stabilizability problem for a reaction-diffusion system modelling a class of spatially structured epidemic systems, Nonlinear Anal. Real World Appl., 3, 4, 453-464 (2002) · Zbl 1020.92027
[12] Allen, L. J.; Bolker, B. M.; Lou, Y.; Nevai, A. L., Asymptotic profiles of the steady states for an sis epidemic reaction-diffusion model, Discrete & Continuous Dynamical Systems-A, 21, 1, 1 (2008) · Zbl 1146.92028
[13] Capone, F.; De Cataldis, V.; De Luca, R., On the stability of a Seir reaction diffusion model for infections under Neumann boundary conditions, Acta Appl Math, 132, 1, 165-176 (2014) · Zbl 1305.35090
[14] Sun, G.; Jin, Z.; Liu, Q.-X.; Li, L., Pattern formation in a spatial S-I model with non-linear incidence rates, J. Stat. Mech: Theory Exp., 2007, 11, P11011 (2007)
[15] Duan, M.; Chang, L.; Jin, Z., Turing patterns of an si epidemic model with cross-diffusion on complex networks, Physica A, 533, 122023 (2019) · Zbl 07570026
[16] Ruiz-Baier, R.; Tian, C., Mathematical analysis and numerical simulation of pattern formation under cross-diffusion, Nonlinear Anal. Real World Appl., 14, 1, 601-612 (2013) · Zbl 1263.92007
[17] Kumari, N.; Mohan, N., Cross diffusion induced turing patterns in a tritrophic food chain model with Crowley-Martin functional response, Mathematics, 7, 3, 229 (2019)
[18] Gambino, G.; Lombardo, M. C.; Sammartino, M., Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion, Math Comput Simul, 82, 6, 1112-1132 (2012) · Zbl 1320.35170
[19] Sun, G.-Q.; Jin, Z.; Li, L.; Haque, M.; Li, B.-L., Spatial patterns of a predator-prey model with cross diffusion, Nonlinear Dyn, 69, 4, 1631-1638 (2012) · Zbl 1263.34062
[20] Wang, Y.; Wang, J.; Zhang, L., Cross diffusion-induced pattern in an si model, Appl Math Comput, 217, 5, 1965-1970 (2010) · Zbl 1200.92038
[21] Berres, S.; Ruiz-Baier, R., A fully adaptive numerical approximation for a two-dimensional epidemic model with nonlinear cross-diffusion, Nonlinear Anal. Real World Appl., 12, 5, 2888-2903 (2011) · Zbl 1219.92059
[22] Ryu, K.; Ahn, I., Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics, J Math Anal Appl, 283, 1, 46-65 (2003) · Zbl 1115.35321
[23] Ryu, K.; Ahn, I., Positive solutions of certain nonlinear elliptic systems with self-diffusions: nondegenerate vs. degenerate diffusions, Nonlinear Analysis: Theory, Methods & Applications, 63, 2, 247-259 (2005) · Zbl 1124.35021
[24] Kim, K. I.; Lin, Z., Coexistence of three species in a strongly coupled elliptic system, Nonlinear Analysis: Theory, Methods & Applications, 55, 3, 313-333 (2003) · Zbl 1103.35323
[25] Pao, C., Strongly coupled elliptic systems and applications to lotka-volterra models with cross-diffusion, Nonlinear Analysis: Theory, Methods & Applications, 60, 7, 1197-1217 (2005) · Zbl 1074.35034
[26] Zhou, H.; Lin, Z., Coexistence in a strongly coupled system describing a two-species cooperative model, Appl Math Lett, 20, 11, 1126-1130 (2007) · Zbl 1260.35043
[27] Melese, D.; Gakkhar, S., Pattern formation in tri-trophic ratio-dependent food chain model, Appl Math (Irvine), 2, 12, 1507 (2011)
[28] Peng, R.; Wang, M.; Yang, G., Stationary patterns of the holling-tanner prey-predator model with diffusion and cross-diffusion, Appl Math Comput, 196, 2, 570-577 (2008) · Zbl 1131.92067
[29] Tian, C., Turing patterns created by cross-diffusion for a Holling II and Leslie-Gower type three species food chain model, J Math Chem, 49, 6, 1128-1150 (2011) · Zbl 1216.92069
[30] Liu, J., Cross-diffusion induced stationary patterns in a prey-predator system with parental care for predators, Appl Math Comput, 237, 176-189 (2014) · Zbl 1334.92352
[31] Bie, Q.; Wang, Q.; Yao, Z.-a., Cross-diffusion induced instability and pattern formation for a Holling Type-II predator-prey model, Appl Math Comput, 247, 1-12 (2014) · Zbl 1338.92095
[32] Peng, Y.; Ling, H., Pattern formation in a ratio-dependent predator-prey model with cross-diffusion, Appl Math Comput, 331, 307-318 (2018) · Zbl 1427.35126
[33] Liu, C.; Li, L.; Wang, Z.; Wang, R., Pattern transitions in a vegetation system with cross-diffusion, Appl Math Comput, 342, 255-262 (2019) · Zbl 1428.92129
[34] Mishra, S.; Upadhyay, R. K., Strategies for the existence of spatial patterns in predator-prey communities generated by cross-diffusion, Nonlinear Anal. Real World Appl., 51, 103018 (2020) · Zbl 1430.92073
[35] Sun, G.-Q.; Jin, Z.; Liu, Q.-X.; Li, L., Spatial pattern in an epidemic system with cross-diffusion of the susceptible, Journal of Biological Systems, 17, 01, 141-152 (2009) · Zbl 1364.92053
[36] Fan, Y., Pattern formation of an epidemic model with cross diffusion, Appl Math Comput, 228, 311-319 (2014) · Zbl 1365.92121
[37] Upadhyay, R. K.; Thakur, N., Spatiotemporal pattern induced by self and cross-diffusion in a spatial holling-tanner model, Computational Ecology and Software, 2, 1, 1-25 (2012)
[38] Kuto, K., Stability of steady-state solutions to a prey-predator system with cross-diffusion, J Differ Equ, 197, 2, 293-314 (2004) · Zbl 1210.35122
[39] Kadota, T.; Kuto, K., Positive steady states for a prey-predator model with some nonlinear diffusion terms, J Math Anal Appl, 323, 2, 1387-1401 (2006) · Zbl 1160.35441
[40] Li, J.-q., Global stability of an epidemic model with nonlinear incidence rate and differential infectivity, Appl Math Comput, 161, 3, 769-778 (2005) · Zbl 1055.92053
[41] Jiao, J.; Chen, L.; Luo, G., An appropriate pest management si model with biological and chemical control concern, Appl Math Comput, 196, 1, 285-293 (2008) · Zbl 1130.92046
[42] Shu, L.; Weng, P., Traveling wave solutions of a diffusive si model with strong allee effect, Appl Math Comput, 222, 190-200 (2013) · Zbl 1329.35324
[43] Shang, Y., Mixed si (r) epidemic dynamics in random graphs with general degree distributions, Appl Math Comput, 219, 10, 5042-5048 (2013) · Zbl 1279.92080
[44] Li, H.-L.; Zhang, L.; Teng, Z.; Jiang, Y.-L.; Muhammadhaji, A., Global stability of an SI epidemic model with feedback controls in a patchy environment, Appl Math Comput, 321, 372-384 (2018) · Zbl 1426.92077
[45] Tong, Y.; Lei, C., An sis epidemic reaction-diffusion model with spontaneous infection in a spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 41, 443-460 (2018) · Zbl 1380.92086
[46] Murray, J. D., Mathematical biology: I. an introduction, 17 (2007), Springer Science & Business Media
[47] Kumari, N.; Mohan, N., Positive solutions and pattern formation in a diffusive tritrophic system with Crowley-Martin functional response, Nonlinear Dyn, 1-22 (2020) · Zbl 1434.92037
[48] Cantrell, R. S.; Cosner, C., Spatial ecology via reaction-diffusion equations (2004), John Wiley & Sons · Zbl 1058.92041
[49] Zhou, J.; Mu, C., Positive solutions for a three-trophic food chain model with diffusion and Beddington-Deangelis functional response, Nonlinear Anal. Real World Appl., 12, 2, 902-917 (2011) · Zbl 1206.35239
[50] Kundu, S.; Kumari, N.; Kouachi, S.; Kundu, P., Stability and bifurcation analysis of a heroin model with diffusion, delay and nonlinear incidence rate, Modeling Earth Systems and Environment, 1-12 (2021)
[51] Han, R.; Dai, B., Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with Allee effect, Nonlinear Anal. Real World Appl., 45, 822-853 (2019) · Zbl 1406.37064
[52] Tilman, D.; Lehman, C.; Kareiva, P., Population Dynamics in Spatial Habitats. Spatial Ecology (1997)
[53] Grenfell, B. T.; Bjørnstad, O. N.; Kappey, J., Travelling waves and spatial hierarchies in measles epidemics, Nature, 414, 6865, 716-723 (2001)
[54] Cummings, D. A.; Irizarry, R. A.; Huang, N. E.; Endy, T. P.; Nisalak, A.; Ungchusak, K.; Burke, D. S., Travelling waves in the occurrence of dengue haemorrhagic fever in thailand, Nature, 427, 6972, 344-347 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.