×

Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation. (English) Zbl 1510.74042

Summary: This paper analytically investigates the nonlinear free vibration and snap-through instability of nanocomposite shallow arches reinforced with carbon nanotubes (CNTs). The functionally graded (FG) carbon nanotube reinforced composite (CNTRC) arch with shallow curvature is analysed under uniformly distributed transverse loading. The arch is assumed to rest on a three-parameter nonlinear elastic foundation in a uniform temperature field. Thermo-mechanical properties of the arch are graded through the thickness and are considered to be temperature-dependent. The equations of motion are established based on a general high-order shear deformation theory. These nonlinear equations are derived by Hamilton’s principle within the framework of the von Kármán assumption. The static equilibrium equations and dynamic equations of motion are solved analytically for the arch with immovable simply supported edges. The two-step perturbation technique and Galerkin method are implemented to obtain the closed-form solutions. The novel results illustrate the influences of CNT distribution pattern, foundation stiffness and geometrical parameters on the linear/nonlinear frequency and snap-through instability of the arch. It is shown that the minimum value of limit loads/frequencies belongs to the FG-O type of nanocomposite arches and the maximum ones are obtained in FG-X pattern.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
74B20 Nonlinear elasticity
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lim, C. W.; Yang, Q.; Lü, C. F., Two-dimensional elasticity solutions for temperature dependent in-plane vibration of FGM circular arches, Compos. Struct., 90, 323-329 (2009)
[2] Malekzadeh, P.; Atashi, M. M.; Karami, G., In-plane free vibration of functionally graded circular arches with temperature-dependent properties under thermal environment, J. Sound. Vib., 326, 837-851 (2009)
[3] Piovan, M. T.; Domini, S.; Ramirez, J. M., In-plane and out-of-plane dynamics and buckling of functionally graded circular curved beams, Compos. Struct., 94, 3194-3206 (2012)
[4] Jun, L.; Guangwei, R.; Jin, P.; Xiaobin, L.; Weiguo, W., Free vibration analysis of a laminated shallow curved beam based on trigonometric shear deformation theory, Mech. Based Des. Struct., 42, 111-129 (2014)
[5] Eroglu, U., In-plane free vibrations of circular beams made of functionally graded material in thermal environment: beam theory approach, Compos. Struct., 122, 217-228 (2015)
[6] Noori, A. R.; Temel, B., On the vibration analysis of laminated composite parabolic arches with variable cross-section of various ply stacking sequences, Mech. Adv. Mater Struct. (2018)
[7] Babaei, H.; Kiani, Y.; Eslami, M. R., Thermomechanical nonlinear in-plane analysis of fix-ended FGM shallow arches on nonlinear elastic foundation using two-step perturbation technique, Int. J. Mech. Mater. Des., 15, 225-244 (2019)
[8] Babaei, H.; Kiani, Y.; Eslami, M. R., Large amplitude free vibration analysis of shear deformable FGM shallow arches on nonlinear elastic foundation, Thin-Walled Struct., 144, 106237 (2019)
[9] Li, Z.; Zheng, J.; Zhang, Z.; He, H., Nonlinear stability and buckling analysis of composite functionally graded arches subjected to external pressure and temperature loading, Eng. Struct., 199, 109606 (2019)
[10] Tornabene, F.; Fantuzzi, N.; Bacciocchi, M., Refined shear deformation theories for laminated composite arches and beams with variable thickness: natural frequency analysis, Eng. Anal. Bound. Elem., 100, 24-47 (2019) · Zbl 1464.74415
[11] Fariborz, J.; Batra, R. C., Free vibration of bi-directional functionally graded material circular beam using shear deformation theory employing logarithmic function of radius, Compos. Struct., 210, 217-230 (2019)
[12] Zhang, Z.; Liu, A.; Yang, J.; Pi, Y. L.; Huang, Y.; Fu, J., Nonlinear in-plane buckling of shallow laminated arches incorporating shear deformation under a uniform radial loading, Compos. Struct., 252, 112732 (2020)
[13] Babaei, H.; Eslami, M. R., Nonlinear snap-through instability of FGM shallow micro-arches with integrated surface piezoelectric layers based on modified couple stress theory, Int. J. Struct. Stab. Dyn., 19, 8, 1950088 (2019)
[14] She, G. L.; Ren, Y. R.; Yan, K. M., On snap-buckling of porous FG curved nanobeams, Acta Astronaut., 161, 475-484 (2019)
[15] Babaei, H.; Eslami, M. R., On nonlinear vibration and snap-through stability of porous FG curved micro-tubes using two-step perturbation technique, Compos. Struct., 247, 112447 (2020)
[16] Yang, Z.; Yang, J.; Liu, A.; Fu, J., Nonlinear in-plane instability of functionally graded multilayer graphene reinforced composite shallow arches, Compos. Struct., 204, 301-312 (2018)
[17] Yang, Z.; Huang, Y.; Liu, A.; Fu, J.; Wu, D., Nonlinear in-plane buckling of fixed shallow functionally graded graphene reinforced composite arches subjected to mechanical and thermal loading, Appl. Math. Model., 70, 315-327 (2019) · Zbl 1465.74062
[18] Liu, Z.; Yang, C.; Gao, W.; Wu, D.; Li, G., Nonlinear behaviour and stability of functionally graded porous arches with graphene platelets reinforcements, Int. J. Eng. Sci., 137, 37-56 (2019) · Zbl 1425.74232
[19] Polit, O.; Pradyumna, B.; Ganapathi, M., Large amplitude free flexural vibration of functionally graded graphene platelets reinforced porous composite curved beams using finite element based on trigonometric shear deformation theory, Int. J. Non-Linear Mech., 116, 302-317 (2019)
[20] Gao, Y.; Xiao, W. S.; Zhu, H., Snap-buckling of functionally graded multilayer graphene platelet-reinforced composite curved nanobeams with geometrical imperfections, Eur. J. Mech. A/Solids, 82, 103993 (2020) · Zbl 1475.74040
[21] Yang, X.; Liu, H.; Ma, J., Thermo-mechanical vibration of FG curved nanobeam containing porosities and reinforced by graphene platelets, Microsyst. Technol., 26, 2535-2551 (2020)
[22] Yang, Z.; Liu, A.; Yang, J.; Fu, J.; Yang, B., Dynamic buckling of functionally graded graphene nanoplatelets reinforced composite shallow arches under a step central point load, J. Sound Vib., 465, 115019 (2020)
[23] Zhao, S.; Yang, Z.; Kitipornchai, S.; Yang, J., Dynamic instability of functionally graded porous arch reinforced by graphene platelets, Thin-Walled Struct., 147, 106491 (2020)
[24] Yang, Z.; Zhao, S.; Yang, J.; Lv, J.; Liu, A.; Fu, J., In-plane and out-of-plane free vibrations of functionally graded composite arches with graphene reinforcements, Mech. Adv. Mater Struct. (2020)
[25] Tabatabaei-Nejhad, S. Z.; Malekzadeh, P.; Eghtesad, M., Out-of-plane vibration of laminated FG-GPLRC curved beams with piezoelectric layers, Thin-Walled Struct., 150, 106678 (2020)
[26] Bahranifard, F.; Haghighi, M. R.G.; Malekzadeh, P., In-plane responses of multilayer FG-GPLRC curved beams in thermal environment under moving load, Acta Mech., 231, 2679-2696 (2020)
[27] Yang, Z.; Feng, C.; Yang, J.; Wang, Y.; Lv, J.; Liu, A.; Fu, J., Geometrically nonlinear buckling of graphene platelets reinforced dielectric composite (GPLRDC) arches with rotational end restraints, Aerosp. Sci. Technol., 107, 106326 (2020)
[28] Yang, Z.; Wu, D.; Yang, J.; Lai, S. K.; Lv, J.; Liu, A.; Fu, J., Dynamic buckling of rotationally restrained FG porous arches reinforced with graphene nanoplatelets under a uniform step load, Thin-Walled Struct., 166, 108103 (2021)
[29] Yang, Z.; Liu, A.; Yang, J.; Lai, S. K.; Lv, J.; Fu, J., Analytical prediction for nonlinear buckling of elastically supported FG-GPLRC arches under a central point load, Materials, 14, 2026 (2021)
[30] She, G. L.; Liu, H. B.; Karami, B., Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets, Thin-Walled Struct., 160, 107407 (2021)
[31] Talebizadehsardari, P.; Eyvazian, A.; Asmael, M.; Karami, B.; Shahsavari, D.; Mahani, R. B., Static bending analysis of functionally graded polymer composite curved beams reinforced with carbon nanotubes, Thin-Walled Struct., 157, 107139 (2020)
[32] Zhang, Y. Y.; Zhang, B.; Shen, H. M.; Wang, Y. X.; Zhang, X.; Liu, J., Nonlinear bending analysis of functionally graded CNT-reinforced shallow arches placed on elastic foundations, Acta Mech. Solida Sin., 33, 164-186 (2020)
[33] Zhang, Y. Y.; Wang, Y. X.; Zhang, X.; Shen, H. M.; She, G. L., On snap-buckling of FG-CNTR curved nanobeams considering surface effects, Steel Compos. Struct., 38, 293-304 (2021)
[34] Arshid, E.; Arshid, H.; Amir, S.; Mousavi, B., Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory, Arch. Civ. Mech. Eng. (2021)
[35] Mirzaei, M.; Kiani, Y., Snap-through phenomenon in a thermally postbuckled temperature dependent sandwich beam with FG-CNTRC face sheets, Compos. Struct., 134, 1004-1013 (2015)
[36] Jin, Q.; Hua, X.; Rena, Y.; Jiang, H., On static and dynamic snap-throughs of the imperfect post-buckled FG-GRC sandwich beams, J. Sound Vib., 489, 115684 (2020)
[37] Salari, E.; Vanini, S. A.S.; Ashoori, A., Nonlinear thermal stability and snap-through buckling of temperature-dependent geometrically imperfect graded nanobeams on nonlinear elastic foundation, Mater. Res. Express, 6, 1250j6 (2020)
[38] Ke, L. L.; Yang, J.; Kitipornchai, S., Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams, Compos. Struct., 92, 676-683 (2010)
[39] Jalaei, M. H.; Civalek, O., On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam, Int. J. Eng. Sci., 143, 14-32 (2019) · Zbl 1476.82018
[40] Yang, J.; Huang, X. H.; Shen, H. S., Nonlinear vibration of temperature-dependent FG-CNTRC laminated beams with negative poisson’s ratio, Int. J. Struct. Stab. Dyn., 20, 2050043 (2020)
[41] Yang, Z.; Tam, M.; Zhang, Y.; Kitipornchai, S.; Lv, J.; Yang, J., Nonlinear dynamic response of FG graphene platelets reinforced composite beam with edge cracks in thermal environment, Int. J. Struct. Stab. Dyn., 20, 108103 (2020)
[42] Akbas, S. D.; Ersoy, H.; Akgöz, B.; Civalek, O., Dynamic analysis of fiber-reinforced composite beam under moving load by the Ritz method, Mathematics, 9, 1048 (2021)
[43] Abdelrahmana, A. A.; Esen, I.; Eltaher, M. A., Vibration response of Timoshenko perforated microbeams under accelerating load and thermal environment, Appl. Math. Comput., 407, 126307 (2021) · Zbl 1510.74041
[44] Civalek, O.; Dastjerdi, S.; Akbaş, S. D.; Akgöz, B., Vibration analysis of carbon nanotube-reinforced composite microbeams, Math. Methods Appl. Sci. (2021)
[45] Civalek, O.; Akbas, S. D.; Akgöz, B.; Dastjerdi, S., Forced vibration analysis of composite beams reinforced by carbon nanotubes, Nanomaterials, 11, 571 (2021)
[46] Shen, H. S., Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments, Compos. Struct., 91, 9-19 (2009)
[47] Shen, H. S.; He, X. Q.; Yang, D. Q., Vibration of thermally postbuckled carbon nanotube-reinforced composite beams resting on elastic foundations, Int. J. Non-Linear Mech., 91, 69-75 (2017)
[48] Babaei, H.; Eslami, M. R., Study on nonlinear vibrations of temperature- and size-dependent FG porous arches on elastic foundation using nonlocal strain gradient theory, Eur. Phys. J. Plus, 136, 24 (2021)
[49] Sayyad, A. S.; Ghugal, Y. M., A sinusoidal beam theory for functionally graded sandwich curved beams, Compos. Struct., 226, 111246 (2019)
[50] Babaei, H.; Kiani, Y.; Eslami, M. R., Vibrational behavior of thermally pre-/post-buckled FG-CNTRC beams on nonlinear elastic foundation: a two-step perturbation technique, Acta Mech. (2021) · Zbl 1492.74047
[51] Eslami, M. R., Buckling and Postbuckling of Beams, Plates, and Shells (2018), Springer: Springer Switzerland · Zbl 1405.74002
[52] Reddy, J. N., Mechanics of Laminated Composite Plates and Shells, Theory and Application (2003), CRC Press: CRC Press Boca Raton
[53] Babaei, H.; Eslami, M. R., On nonlinear vibration and snap-through buckling of long FG porous cylindrical panels using nonlocal strain gradient theory, Compos. Struct., 256, 113125 (2021)
[54] Shen, H. S., A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells (2013), John Wiley and Sons: John Wiley and Sons Singapore · Zbl 1292.74001
[55] Babaei, H., Nonlinear analysis of size-dependent frequencies in porous FG curved nanotubes based on nonlocal strain gradient theory, Eng. Comput. (2021)
[56] Shen, H. S.; Xiang, Y., Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments, Eng. Struct., 56, 698-708 (2013)
[57] Babaei, H.; Kiani, Y.; Eslami, M. R., Geometrically nonlinear analysis of shear deformable FGM shallow pinned arches on nonlinear elastic foundation under mechanical and thermal loads, Acta Mech., 229, 3123-3141 (2018) · Zbl 1459.74102
[58] Khosravi, S.; Arvin, H.; Kiani, Y., Interactive thermal and inertial buckling of rotating temperature-dependent FG-CNT reinforced composite beams, Compos. Part B, 175, 107178 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.