×

A new homotopy approach for stochastic static model updating with large uncertain measurement errors. (English) Zbl 1481.74716

Summary: Large measurement errors are a major challenge in structural model updating. Based on the concept of homotopy, a new stochastic static model updating method is proposed to update structural models using uncertain static data with large measurement errors. First, considering the uncertainty of the static measurement, a stochastic model updating equation for element update factors is set up. To solve the stochastic model updating equation, a series of homotopy deformation equations are presented to establish the relationship between the deterministic update factors and the random update factors. Furthermore, the homotopy series expansions of the random update factors can be determined by solving the homotopy deformation equations. Since the measured degrees of freedom of updated structures are usually limited or unavailable, a static condensation technique is used for stochastic model updating. To address the ill-posed problems caused by incomplete measurement information and static measurement errors, the Tikhonov regularization method is used in the process of solving the homotopy deformation equations. Three numerical examples are given to demonstrate the validity of the proposed stochastic model updating method. The numerical results clearly show that unlike the second-order perturbation method, this new method can produce better accuracy in cases with large measurement errors. Compared with the Bayesian method with the Delayed Rejection Adaptive Metropolis sampling technique and even a fast Bayesian method, the proposed method utilizes much less computational time and provides an equivalent accuracy. Finally, static loading experiments on a two-span continuous concrete beam are implemented to validate the proposed model updating method.

MSC:

74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
62F15 Bayesian inference
62P30 Applications of statistics in engineering and industry; control charts
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Simoen, E.; Roeck, G. D.; Lombaert, G., Dealing with uncertainty in model updating for damage assessment: a review, Mech. Syst. Signal Process., 56-57, 56, 123-149 (2015)
[2] Sanayei, M.; Imbaro, G. R.; Mcclain, J. A.S.; Brown, L. C., Structural model updating using experimental static measurements, J. Struct. Eng., 123, 6, 792-798 (1997)
[3] Ren, W. X.; Fang, S. E.; Deng, M. Y., Response surface-based finite-element-model updating using structural static responses, J. Eng. Mech., 137, 4, 248-257 (2011)
[4] Yang, H.; Xu, X.; Neumann, I., Laser scanning-based updating of a finite-element model for structural health monitoring, IEEE Sens. J., 16, 7, 2100-2104 (2016)
[5] Liu, Y.; Ma, J.; Nie, J. G.; Zhang, S. Y., Virtual distortion method-based finite element model updating of bridges by using static deformation, J. Eng. Mech., 143, 3, 1-9 (2017)
[6] Lu, Z. R.; Zhu, J. J.; Ou, Y. J., Structural damage identification using incomplete static displacement measurement, Struct. Eng. Mech., 63, 2, 251-257 (2017)
[7] Sanayei, M.; Phelps, J. E.; Sipple, J. D.; Bell, E. S.; Brenner, B. R., Instrumentation, nondestructive testing, and finite-element model updating for bridge evaluation using strain measurements, J. Bridge Eng., 17, 1, 130-138 (2012)
[8] Seyedpoor, S. M.; Yazdanpanah, O., An efficient indicator for structural damage localization using the change of strain energy based on static noisy data, Appl. Math. Model., 38, 9-10, 2661-2672 (2014)
[9] Sanayei, M.; Bell, E. S.; Javdekar, C. N.; Edelmann, J. L.; Slavsky, E., Damage localization and finite-element model updating using multi-response NDT Data, J. Bridge Eng., 11, 6, 688-698 (2006)
[10] Schlune, H.; Plos, M.; Gylltoft, K., Improved bridge evaluation through finite element model updating using static and dynamic measurements, Eng. Struct., 31, 7, 1477-1485 (2009)
[11] Deng, L.; Cai, C. S., Bridge model updating using response surface method and genetic algorithm, J. Bridge Eng., 15, 5, 553-564 (2010)
[12] Wang, H.; Li, A. Q.; Li, J., Progressive finite element model calibration of a long-span suspension bridge based on ambient vibration and static measurements, Eng. Struct., 32, 9, 2546-2556 (2010)
[13] Jung, D. S.; Kim, C. Y., Finite element model updating on small-scale bridge model using the hybrid genetic algorithm, Struct. Infrastruct. Eng., 9, 5, 481-495 (2013)
[14] Shan, D. S.; Li, Q.; Khan, I.; Zhou, X. H., A novel finite element model updating method based on substructure and response surface model, Eng. Struct., 103, 147-156 (2015)
[15] Hasançebi, O.; Dumlupynar, T., Linear and nonlinear model updating of reinforced concrete T-beam bridges using artificial neural networks, Comput. Struct., 119, 1-11 (2013)
[16] Cunha, J.; Foltete, E.; Bouhaddi, N., Evaluation of stiffness of semi-rigid joints in pultruded profiles from dynamic and static data by using model updating technique, Eng. Struct., 30, 4, 1024-1036 (2008)
[17] Lu, Z. R.; Lin, X. X.; Chen, Y. M.; Huang, M., Hybrid sensitivity matrix for damage identification in axially functionally graded beams, Appl. Math. Model., 1, 41, 604-617 (2017) · Zbl 1443.74081
[18] Banan, M. R.; Hjelmstad, K. D., Parameter estimation of structures from static response. ii: numerical simulation studies, J. Struct. Eng., 120, 11, 3259-3283 (1994)
[19] Sanayei, M.; Khaloo, A.; Gul, M.; Catbas, F. N., Automated finite element model updating of a scale bridge model using measured static and modal test data, Eng. Struct., 102, 1, 66-79 (2015)
[20] Mares, C.; Mottershead, J. E.; Friswell, M. I., Stochastic model updating: part 1—Theory and simulated example, Mech. Syst. Signal Process., 20, 7, 1674-1695 (2006)
[21] Rui, Q.; Ouyang, H.; Wang, H. Y., An efficient statistically equivalent reduced method on stochastic model updating, Appl. Math. Model., 37, 8, 6079-6096 (2013)
[22] Zhai, X.; Fei, C. W.; Choy, Y. S.; Wang, J. J., A stochastic model updating strategy-based improved response surface model and advanced Monte Carlo simulation, Mech. Syst. Signal Process., 82, 323-338 (2016)
[23] Chakraborty, S.; Sen, A., Adaptive response surface based efficient finite element model updating, Finite Elem. Anal. Des., 80, 3, 33-40 (2014)
[24] Yeo, I.; Shin, S.; Lee, H. S.; Chang, S. P., Statistical damage assessment of framed structures from static responses, J. Eng. Mech., 126, 4, 414-421 (2000)
[25] Camillacci, R.; Gabriele, S., Mechanical identification and model validation for shear-type frames, Mech. Syst. Signal. Process., 19, 3, 597-614 (2005)
[26] Khodaparast, H. H.; Mottershead, J. E.; Friswell, M. I., Perturbation methods for the estimation of parameter variability in stochastic model updating, Mech. Syst. Signal Process., 22, 8, 1751-1773 (2008)
[27] Hua, X. G.; Ni, Y. Q.; Chen, Z. Q.; Ko, M. J., An improved perturbation method for stochastic finite element model updating, Int. J. Numer. Meth. Eng., 73, 13, 1845-1864 (2010) · Zbl 1195.74177
[28] Wu, Z. F.; Huang, B.; Li, Y. J.; Pu, W. C., A statistical model updating method of beam structures with random parameters under static load, Appl. Sci., 7, 6, 601 (2017)
[29] Beck, J. L.; Katafygiotis, L. S., Updating models and their uncertainties. I: bayesian statistical framework, J. Eng. Mech., 124, 4, 455-461 (1998)
[30] Zhang, J.; Wan, C.; Sato, T., Advanced markov chain monte carlo approach for finite element calibration under uncertainty, Comput.Aided. Civ. Inf., 28, 7, 522-530 (2013)
[31] Wang, X.; Hou, R.; Xia, Y.; Zhou, X. Q., Structural damage detection based on variational bayesian inference and delayed rejection adaptive metropolis algorithm, Struct. Health Monit., 6, 1-18 (2020)
[32] Das, A.; Debnath, N., A Bayesian finite element model updating with combined normal and lognormal probability distributions using modal measurements, Appl. Math. Model., 9, 61, 457-483 (2018) · Zbl 1462.62175
[33] Rubio, P. B.; Louf, F.; Chamoin, L., Fast model updating coupling Bayesian inference and PGD model reduction, Comput. Mech., 4, 62, 1485-1509 (2018) · Zbl 1469.74121
[34] Au, S. K., Fast bayesian FFT method for ambient modal identification with separated modes, J. Eng. Mech., 139, 3, 214-226 (2013)
[35] Alexandrino, P. D.S. L.; Gomes, G. F.; Cunha Jr, S. S., A robust optimization for damage detection using multiobjective genetic algorithm, neural network and fuzzy decision making, Inverse Probl. Sci. Eng., 28, 1, 21-46 (2020) · Zbl 1461.90130
[36] Gomes, G. F.; Almeida, F. A.D.; Cunha Jr, S. S.D.; Ancelotti Jr, A. C., An estimate of the location of multiple delaminations on aeronautical CFRP plates using modal data inverse problem, Int. J. Adv. Manuf. Tech., 99, 1155-1174 (2018)
[37] Gabriele, S.; Valente, C., An interval based technique for FE model updating, Int. J. Reliab. Safety, 3, 1-3, 79-103 (2009)
[38] Ziaeirad, S.; Imregun, M., On the use of regularization techniques for finite element model updating, Inverse Probl. Sci. Eng., 7, 5, 471-503 (1999)
[39] Titurus, B.; Friswell, M. I., Regularization in model updating, Int. J. Numer. Meth. Eng., 75, 4, 440-478 (2008) · Zbl 1195.74141
[40] Wu, Y. H.; Zhou, X. Q., L_1 regularized model updating for structural damage detection, Int. J. Struct. Stab. Dyn., 18, 12, Article 1850157 pp. (2018)
[41] Zhang, C. D.; Xu, Y. L., Comparative studies on damage identification with Tikhonov regularization and sparse regularization, Struct. Control. Health Monit., 23, 3, 560-579 (2016)
[42] Sanayei, M.; Wadia-Fascetti, S.; Arya, B.; Santini, E. M., Significance of modeling error in structural parameter estimation, Comput.Aided. Civ. Inf., 16, 12-27 (2001)
[43] Astroza, R.; Alessandri, A., Effects of model uncertainty in nonlinear structural finite element model updating by numerical simulation of building structures, Struct. Control. Health, 26, 3, e2297 (2019)
[44] Astroza, R.; Alessandri, A.; Conte, J. P., A dual adaptive filtering approach for nonlinear finite element model updating accounting for modeling uncertainty, Mech. Syst. Signal. Process., 115, 782-800 (2019)
[45] Zsarnóczay, A.; Baker, J. W., Using model error in response history analysis to evaluate component calibration methods, Earthq. Eng. Struct. Dyn., 49, 2, 175-193 (2020)
[46] Rageh, A.; Azam, S. E.; Linzell, D. G., Steel railway bridge fatigue damage detection using numerical models and machine learning: mitigating influence of modeling uncertainty, Int. J. Fatigue, 134, Article 105458 pp. (2020)
[47] Stefanou, G., The stochastic finite element method: past, present and future, Comput. Meth. Appl. Mech. Eng., 198, 9, 1031-1051 (2009) · Zbl 1229.74140
[48] Sachdeva, S. K.; Nair, P. B.; Keane, A. J., Comparative study of projection schemes for stochastic finite element analysis, Comput. Meth. Appl. Mech. Eng., 195, 19-22, 2371-2392 (2006) · Zbl 1142.74047
[49] Gao, W.; Wu, D.; Song, C. M.; Tin-Loi, F.; Li, X. J., Hybrid probabilistic interval analysis of bar structures with uncertainty using a mixed perturbation Monte-Carlo method, Finite. Elem. Anal. Des., 47, 7, 643-652 (2011)
[50] Wu, D.; Gao, W.; Hui, D.; Kang, G.; Li, K. Y., Stochastic static analysis of Euler-Bernoulli type functionally graded structures, Compos. Part. BEng., 134, 69-80 (2018)
[51] Liao, S. J., Numerically solving non-linear problems by the homotopy analysis method, Comput. Mech., 20, 6, 530-540 (1997) · Zbl 0923.73076
[52] Liao, S. J., On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147, 2, 499-513 (2004) · Zbl 1086.35005
[53] Zhang, H.; Huang, B., A new homotopy-based approach for structural stochastic analysis, Probab. Eng. Mech., 55, 42-53 (2019)
[54] Ministry of Housing and Urban-Rural Development of the People’s Republic of China, Standard for test method of concrete structures: GB/T 50152-2012 (2012), China Architecture & Building Press: China Architecture & Building Press Beijing, China
[55] Ministry of Housing and Urban-Rural Development of the People’s Republic of China, Code for design of concrete structures: GB 50010-2010 (2011), China Architecture & Building Press: China Architecture & Building Press Beijing, China
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.