×

Linearly implicit variable step-size BDF schemes with Fourier pseudospectral approximation for incompressible Navier-Stokes equations. (English) Zbl 1484.65276

Summary: In this paper, linearly implicit backward differentiation formulas with variable step-sizes are proposed to solve numerically the two-dimensional incompressible Navier-Stokes equations (formulated in vorticity-stream function). With Fourier pseudospectral methods for spatial discretization, the diffusion term is discretized implicitly and the nonlinear convection term is treated by a combination of implicit and explicit discretizations. As a result, only linear solvers are needed at each time step to achieve the desired temporal accuracy. With the help of a priori assumption and aliasing error control techniques, the error estimates for one-step and two-step backward differentiation formulas are established in several norms under appropriate step-size constraints. Compared with the numerical results of implicit-explicit (the nonlinear convection term is treated explicitly) BDF2 method and fully implicit Crank-Nicolson method, it demonstrates that the proposed linearly implicit variable step-size BDF2 method is effective and robust.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akrivis, G.; Crouzeix, M.; Makridakis, Ch., Implicit-explicit multistep finite element methods for nonlinear parabolic problems, Math. Comput., 67, 457-477 (1998) · Zbl 0896.65066
[2] Akrivis, G.; Crouzeix, M.; Makridakis, Ch., Implicit-explicit multistep methods for quasilinear parabolic equations, Numer. Math., 82, 521-541 (1999) · Zbl 0936.65118
[3] Akrivis, G.; Karakashian, O.; Karakatsani, F., Linearly implicit methods for nonlinear evolution equations, Numer. Math., 94, 403-418 (2003) · Zbl 1029.65109
[4] Akrivis, G.; Crouzeix, M., Linearly implicit methods for nonlinear parabolic equations, Math. Comput., 73, 613-635 (2004) · Zbl 1045.65079
[5] Akrivis, G.; Papageorgiou, D. T.; Smyrlis, Y., Linearly implicit methods for a semilinear parabolic system arising in two-phase flows, IMA J. Numer. Anal., 31, 299-321 (2011) · Zbl 1428.35339
[6] Akrivis, G.; Smyrlis, Y., Linearly implicit schemes for a class of dispersive-dissipative systems, Calcolo, 48, 145-172 (2011) · Zbl 1223.65050
[7] Akrivis, G.; Lubich, Ch., Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations, Numer. Math., 131, 713-735 (2015) · Zbl 1334.65124
[8] Akrivis, G.; Kalogirou, A.; Papageorgiou, D.; Smyrlis, Y., Linearly implicit schemes for multi-dimensional Kuramoto-Sivashinsky type equations arising in falling film flows, IMA J. Numer. Anal., 36, 317-336 (2016) · Zbl 1425.76178
[9] Ascher, U. M.; Ruuth, S. J.; Wetton, W. T.R., Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32, 797-823 (1995) · Zbl 0841.65081
[10] Becker, J., A second order backward difference method with variable steps for a parabolic problem, BIT Numer. Math., 38, 644-662 (1998) · Zbl 0923.65050
[11] Botella, O., On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time, Comput. Fluids, 26, 107-116 (1997) · Zbl 0898.76077
[12] Botella, O.; Peyret, R., Computing singular solutions of the Navier-Stokes equations with the Chebyshev-collocation method, Int. J. Numer. Methods Fluids, 36, 125-163 (2001) · Zbl 0987.76070
[13] Boyd, J., Chebyshev and Fourier Spectram Methods (2001), Dover: Dover New York · Zbl 0994.65128
[14] Canuto, C.; Quarteroni, A., Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comput., 38, 67-86 (1982) · Zbl 0567.41008
[15] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0658.76001
[16] Chen, G.; Cloutier, B.; Li, N.; Muite, B. K.; Rigge, P., Parallel Spectral Numerical Methods (2012), Open Michigan: Open Michigan Michigan
[17] Chen, W.; Wang, X.; Yan, Y.; Zhang, Z., A second order BDF numerical scheme with variable steps for the Cahn-Hilliard equation, SIAM J. Numer. Anal., 57, 495-525 (2019) · Zbl 1435.65142
[18] Cheng, W.; Feng, W.; Gottlieb, S.; Wang, C., A Fourier pseudospectral method for the “Good” Boussinesq equation with second-order temporal accuracy, Numer. Methods Partial Differ. Equ., 31, 202-224 (2015) · Zbl 1327.65195
[19] Constantin, P.; Foias, C., Navier-Stokes Equations (1988), The University of Chicago Press: The University of Chicago Press Chicago · Zbl 0687.35071
[20] Cheng, K. L.; Wang, C., Long time stability of high order multistep numerical schemes for two-dimensional incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 54, 3123-3144 (2016) · Zbl 1457.65141
[21] Du, Q.; Guo, B.; Shen, J., Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals, SIAM J. Numer. Anal., 39, 735-762 (2001) · Zbl 1007.76057
[22] E, W. N., Convergence of Fourier methods for Navier-Stokes equations, SIAM J. Numer. Anal., 30, 650-674 (1993) · Zbl 0776.76021
[23] Emmrich, E., Stability and error of the variable two-step BDF for semilinear parabolic problems, J. Appl. Math. Comput., 19, 33-55 (2005) · Zbl 1082.65086
[24] Feng, X. L.; He, Y. N.; Huang, P. Z., A stabilized implicit fractional-step method for the time-dependent Navier-Stokes equations using equal-order pairs, J. Math. Anal. Appl., 392, 209-224 (2012) · Zbl 1245.35082
[25] Gottlieb, D.; Orszag, S. A., Numerical Analysis of Spectral Methods, Theory and Applications (1977), SIAM: SIAM Philadelphia, PA · Zbl 0412.65058
[26] Gottlieb, S.; Tone, F.; Wang, C.; Wang, X.; Wirosoetisno, D., Long time stability of a classical efficient scheme for two-dimensional Navier-Stokes equations, SIAM J. Numer. Anal., 50, 126-150 (2012) · Zbl 1237.76033
[27] Gottlieb, S.; Wang, C., Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers equation, J. Sci. Comput., 53, 102-128 (2012) · Zbl 1297.76126
[28] Guermond, J. L.; Quartapelle, L., Equivalence of \(u - p\) and \(\zeta - \psi\) formulations of the time-dependent Navier-Stokes equations, Int. J. Numer. Methods Fluids, 18, 471-487 (1994) · Zbl 0794.76022
[29] Guo, B. Y.; Zou, J., Fourier spectral projection method and nonlinear convergence analysis for Navier-Stokes equations, J. Math. Anal. Appl., 282, 766-791 (2003) · Zbl 1040.35061
[30] He, Y. N.; Huang, P. Z.; Feng, X. L., \( H^2\)-stability of the first order fully discrete schemes for the time-dependent Navier-Stokes equations, J. Sci. Comput., 62, 230-264 (2015) · Zbl 1334.76078
[31] Hill, A. T.; Süli, E., Approximation of the global attractor for the incompressible Navier-Stokes equations, IMA J. Numer. Anal., 20, 663-667 (2000) · Zbl 0982.76022
[32] Huang, P. Z.; He, Y. N.; Feng, X. L., Second order time-space iterative method for the stationary Navier-Stokes equations, Appl. Math. Lett., 59, 79-86 (2016) · Zbl 1381.76177
[33] Huang, P. Z.; Feng, X. L.; He, Y. N., An efficient two-step algorithm for the incompressible flow problem, Adv. Comput. Math., 41, 1059-1077 (2015) · Zbl 1334.76080
[34] Ju, N., On the global stability of a temporal discretization scheme for the Navier-Stokes equations, IMA J. Numer. Anal., 22, 577-597 (2002) · Zbl 1160.76330
[35] Kim, N., Large friction limit and the inviscid limit of 2D Navier-Stokes equations under Navier friction condition, SIAM J. Math. Anal., 41, 1653-1663 (2009) · Zbl 1194.35308
[36] Kozono, H.; Taniuchi, Y., Bilinear estimates in BMO and the Navier-Stokes equations, Math. Z., 235, 173-194 (2000) · Zbl 0970.35099
[37] Liao, H.; Tang, T.; Zhou, T., On energy stable, maximum-principle preserving, second order BDF scheme with variable steps for the Allen-Cahn equation, SIAM J. Numer. Anal., 58, 4, 2294-2314 (2020) · Zbl 1447.65083
[38] Liao, H.; Song, X.; Tang, T.; Zhou, T., Analysis of the second order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection, Sci. China Math., 64, 887-902 (2021) · Zbl 1467.74092
[39] Liao, H.; Ji, B.; Wang, L.; Zhang, Z., Mesh-robustness of the variable steps BDF2 method for the Cahn-Hilliard model (2021)
[40] Liu, C.; Shen, J., A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Physica D, 179, 211-228 (2003) · Zbl 1092.76069
[41] Peyret, R., Spectral Methods for Incompressible Viscous Flow (2002), Springer-Verlag: Springer-Verlag New York · Zbl 1005.76001
[42] Qian, L. Z.; Feng, X. L.; He, Y. N., Crank-Nicolson leap-frog time stepping decoupled scheme for the fluid-fluid interaction problems, J. Sci. Comput., 84, 4 (2020) · Zbl 1447.65088
[43] Shen, J.; Tang, T.; Wang, L. L., Spectral Methods. Algorithms, Analysis and Applications (2011), Springer-Verlag: Springer-Verlag New York · Zbl 1227.65117
[44] Tadmor, E., The exponential accuracy of Fourier and Chebyshev differencing methods, SIAM J. Numer. Anal., 23, 1-10 (1986) · Zbl 0613.65017
[45] Temam, R., Sur l’approximation des solutions des équations de Navier-Stokes, C. R. Acad. Sci., Sér. 1 Math., 262, 219-221 (1966) · Zbl 0173.11902
[46] Temam, R., Navier-Stokes Equations, Theorey and Numerical Analysis (1983), North-Holland: North-Holland Amsterdam
[47] Thomée, V., Galerkin Finite Element Methods for Parabolic Problems (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1105.65102
[48] Tone, F.; Wirosoetisno, D., On the long-time stability of the implicit Euler scheme for the two-dimensional Navier-Stokes equations, SIAM J. Numer. Anal., 44, 29-40 (2006) · Zbl 1108.76050
[49] Tone, F., On the long-time stability of the Crank-Nicolson scheme for the 2D Navier-Stokes equations, Numer. Methods Partial Differ. Equ., 23, 1235-1248 (2007) · Zbl 1127.76042
[50] Tone, F., On the long-time \(H^2\) stability of the implicit Euler scheme for the 2D magnetohydrodynamics equations, J. Sci. Comput., 38, 331-348 (2009) · Zbl 1203.76178
[51] Wang, W. S., Dissipativity of the linearly implicit Euler scheme for Navier-Stokes equations with delay, Numer. Methods Partial Differ. Equ., 33, 6, 2114-2140 (2017) · Zbl 1386.65147
[52] Wang, W. S.; Chen, Y. Z.; Fang, H., On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance, SIAM J. Numer. Anal., 57, 1289-1317 (2019) · Zbl 1422.65189
[53] Wang, W. S.; Mao, M. L.; Wang, Z., Stability and error estimates for the variable step-size BDF2 method for linear and semilinear parabolic equations, Adv. Comput. Math., 47, 8 (2021) · Zbl 1472.65108
[54] Wang, X. M., An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations, Numer. Math., 121, 753-779 (2012) · Zbl 1435.76054
[55] Wente, H. C., An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl., 26, 318-344 (1960) · Zbl 0181.11501
[56] Wu, J. L.; Wei, L. L.; Feng, X. L., Novel fractional time-stepping algorithms for natural convection problems with variable density, Appl. Numer. Math., 151, 64-84 (2020) · Zbl 1448.76145
[57] Wu, S.; Liu, X., Convergence of spectral method in time for the Burgers equation, Acta Math. Appl. Sin., 13, 314-320 (1997) · Zbl 0911.65093
[58] Zhang, J. W.; Zhao, C. C., Sharp error estimate of BDF2 scheme with variable time steps for linear reaction-diffusion equations, J. Math., 41, 471-488 (2021)
[59] Zhang, J. W.; Zhao, C. C., Sharp error estimate of BDF2 scheme with variable time steps for molecular beam expitaxial models without slop selection (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.