Déglise, Frédéric; Jin, Fangzhou; Khan, Adeel A. Fundamental classes in motivic homotopy theory. (English) Zbl 1483.14040 J. Eur. Math. Soc. (JEMS) 23, No. 12, 3935-3993 (2021). Following ideas of Fulton and MacPherson, the authors define the bivariant theory with coefficients in a motivic (ring) spectrum \(\mathbb{E}\), graded by integers \(n\in \mathbb{Z}\) and virtual vector bundles \(v\) on a scheme \(X\), as the following group: \[ \mathbb{E}_n(X/S,v):=\operatorname{Hom}_{S\mathcal{H}(S)}(\operatorname{Thom}_X(v)[n],p^!(\mathbb{E}))\] for any finite type separated morphism \(p:X\to S\). These groups satisfies the usual properties: functoriality, covariance for proper maps, contravariance for étale maps, intersection product. The twist by a virtual vector bundle \(v\) is essential because the motivic homotopy category \(S\mathcal{H}(S)\) contains theories which are not oriented, such as Chow-Witt groups, Milnor-Witt motivic cohomology or hermitian \(K\)-theory.The main result of the paper is the construction of a canonical fundamental class \[\eta_f \in \mathbb{E}_n(X/S,v) \] for any smoothable lci morphism \(f:X\to Y\), where \(\langle L_f \rangle\) is the virtual tangent bundle of \(f\), and satisfying an associativity condition and an excess intersection formula. The case of a smooth morphism comes from Morel and Voevodsky’s homotopy purity theorem, which asserts that, for smooth closed pairs \((X,Z)\), the homotopy type of \(X\) with support in \(Z\) is isomorphic to \(\operatorname{Th}_Z(N_ZX)\), the Thom space of the normal bundle of \(Z\) in \(X\). More subtle, the case of a regular closed immersion is achieved thanks the technique of deformation to the normal cone of Fulton. Both cases are then glued together in a straightforward manner.The last part of the article shows how the fundamental class gives rise to Gysin morphisms (i.e. wrong-way variance). The associativity (resp. excess intersection) property above corresponds to the compatibility with composition (resp. excess intersection formula) satisfied by these Gysin morphisms, as in Chow theory. This is related to the absolute purity property.The absolute purity conjecture, stated for étale torsion sheaves and \(l\)-adic sheaves, has been a difficult problem since its formulation by Grothendieck in the mid-sixties (published in 1977 in SGA5). For some time, only the case of one-dimensional regular schemes was known thanks to Deligne. A complete proof was found decades later by Gabber, using a refinement of De Jong resolution of singularities.For triangulated mixed motives, modeled on the previous étale setting by Beilinson, this conjecture was implicit in the expected property. It was first formulated and proved in the rational case by Cisinski-Déglise. Later the absolute purity property was explicitly highlighted in [D.-C. Cisinski and F. Déglise, “Integral mixed motives in equal characteristic”, Preprint, arXiv:1410.6359], and proven for integral étale motives. It became apparent that this important property should hold in greater generality, and philosophically be an addition to the six functors formalism.This property has been obtained in several contexts (rational motives, étale motives, \(\mathbf{KGL}\)-modules) and is studied in greater generality in the present article. New examples can be found in subsequent work by the authors in e.g. [F. Déglise et al., J. Éc. Polytech., Math. 8, 533–583 (2021; Zbl 1471.14052)], and also in [M. Frankland and M. Spitzweck, “Towards the dual motivic Steenrod algebra in positive characteristic”, Preprint, arXiv:1711.05230].An important consequence of this work is a motivic Gauss-Bonnet formula, computing Euler characteristics in the motivic homotopy category. This result is a generalization of a theorem of Levine which explores the idea of refining classical formulas to the quadratic setting (see also the work of Fasel, Hoyois, Kass, Wickelgren and many others). Reviewer: Niels Feld (Toulouse) Cited in 4 Documents MSC: 14F42 Motivic cohomology; motivic homotopy theory 14C17 Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry 19E15 Algebraic cycles and motivic cohomology (\(K\)-theoretic aspects) Keywords:fundamental class; motivic homotopy; Gysin morphism; Euler class; motivic Gauss-Bonnet formula Citations:Zbl 1471.14052 PDF BibTeX XML Cite \textit{F. Déglise} et al., J. Eur. Math. Soc. (JEMS) 23, No. 12, 3935--3993 (2021; Zbl 1483.14040) Full Text: DOI arXiv OpenURL References: [1] Artin, M., Grothendieck, A., Verdier, J.-L.: Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Lecture Notes in Math. 269, Springer, Berlin (1972) Zbl 0234.00007 MR 0354652 · Zbl 0234.00007 [2] Ayoub, J.: Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I. Astérisque 314, x+466 pp. (2008) Zbl 1146.14001 MR 2423375 · Zbl 1146.14001 [3] Bachmann, T., Hoyois, M.: Norms in motivic homotopy theory. arXiv:1711.03061 (2017) [4] Balmer, P.: Derived Witt groups of a scheme. J. Pure Appl. Algebra 141, 101-129 (1999) Zbl 0972.18006 MR 1706376 [5] Barge, J., Morel, F.: Groupe de Chow des cycles orientés et classe d’Euler des fibrés vectoriels. C. R. Acad. Sci. Paris Sér. I Math. 330, 287-290 (2000) Zbl 1017.14001 MR 1753295 · Zbl 1017.14001 [6] Berthelot, P., Grothendieck, A., Illusie, L.: Théorie des intersections et théorème de Riemann-Roch. Lecture Notes in Math. 225, Springer (1971) Zbl 0218.14001 MR 0354655 · Zbl 0218.14001 [7] Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. (4) 7, 181-201 (1975) (1974) Zbl 0307.14008 MR 412191 [8] Bondarko, M., Déglise, F.: Dimensional homotopy t-structures in motivic homotopy theory. Adv. Math. 311, 91-189 (2017) Zbl 1403.14053 MR 3628213 · Zbl 1403.14053 [9] Borel, A., Moore, J. C.: Homology theory for locally compact spaces. Michigan Math. J. 7, 137-159 (1960) Zbl 0116.40301 MR 131271 · Zbl 0116.40301 [10] Calmès, B., Fasel, J.: Finite Chow-Witt correspondences. arXiv:1412.2989 (2014) [11] Calmès, B., Hornbostel, J.: Push-forwards for Witt groups of schemes. Comment. Math. Helv. 86, 437-468 (2011) Zbl 1226.19003 MR 2775136 · Zbl 1226.19003 [12] Cisinski, D.-C.: Descente par éclatements en K-théorie invariante par homotopie. Ann. of Math. (2) 177, 425-448 (2013) Zbl 1264.19003 MR 3010804 · Zbl 1264.19003 [13] Cisinski, D.-C., Déglise, F.: Étale motives. Compos. Math. 152, 556-666 (2016) Zbl 1453.14059 MR 3477640 · Zbl 1453.14059 [14] Cisinski, D.-C., Déglise, F.: Triangulated Categories of Mixed Motives. Springer Monogr. Math., Springer, Cham (2019) Zbl 07138952 MR 3971240 · Zbl 07138952 [15] Conrad, B.: Grothendieck Duality and Base Change. Lecture Notes in Math. 1750, Springer, Berlin (2000) Zbl 0992.14001 MR 1804902 · Zbl 0992.14001 [16] Déglise, F.: Bivariant theories in motivic stable homotopy. Doc. Math. 23, 997-1076 (2018) Zbl 1423.14152 MR 3874952 · Zbl 1423.14152 [17] Déglise, F.: Orientation theory in arithmetic geometry. In: K-Theory (Mumbai, 2016), Hindus-tan Book Agency, New Delhi, 239-347 (2018) Zbl 1451.14067 MR 3930052 [18] Déglise, F., Fasel, J.: MW-motivic complexes. arXiv:1708.06095 (2017) [19] Déglise, F., Fasel, J.: The Milnor-Witt motivic ring spectrum and its associated theories. arXiv:1708.06102 (2017) [20] Déglise, F., Fasel, J.: The Borel character. arXiv:1903.11679 (2019) [21] Déglise, F., Fasel, J., Jin, F., Khan, A. A.: On the rational motivic homotopy category. J. École Polytech. Math. 8, 533-583 (2021) Zbl 07329546 MR 4225026 · Zbl 1471.14052 [22] Druzhinin, A., Kolderup, H.: Cohomological correspondence categories. Algebr. Geom. Topol. 20, 1487-1541 (2020) Zbl 1442.14079 MR 4105557 · Zbl 1442.14079 [23] Ekedahl, T.: On the adic formalism. In: The Grothendieck Festschrift, Vol. II, Progr. Math. 87, Birkhäuser Boston, Boston, MA, 197-218 (1990) Zbl 0821.14010 MR 1106899 · Zbl 0821.14010 [24] Elmanto, E., Hoyois, M., Khan, A. A., Sosnilo, V., Yakerson, M.: Motivic infinite loop spaces. arXiv:1711.05248 (2017) [25] Elmanto, E., Hoyois, M., Khan, A. A., Sosnilo, V., Yakerson, M.: Framed transfers and motivic fundamental classes. J. Topol. 13, 460-500 (2020) Zbl 1444.14050 MR 4092773 · Zbl 1444.14050 [26] Elmanto, E., Khan, A. A.: Perfection in motivic homotopy theory. Proc. London Math. Soc. (3) 120, 28-38 (2020) Zbl 1440.14123 MR 3999675 · Zbl 1440.14123 [27] Fasel, J.: The Chow-Witt ring. Doc. Math. 12, 275-312 (2007) Zbl 1169.14302 MR 2350291 · Zbl 1169.14302 [28] Fasel, J.: Groupes de Chow-Witt. Mém. Soc. Math. France (N.S.) 113, viii+197 pp. (2008) Zbl 1190.14001 MR 2542148 · Zbl 1190.14001 [29] Fasel, J.: The excess intersection formula for Grothendieck-Witt groups. Manuscripta Math. 130, 411-423 (2009) Zbl 1195.14009 MR 2563143 · Zbl 1195.14009 [30] Fasel, J., Srinivas, V.: Chow-Witt groups and Grothendieck-Witt groups of regular schemes. Adv. Math. 221, 302-329 (2009) Zbl 1167.13006 MR 2509328 · Zbl 1167.13006 [31] Frankland, M., Spitzweck, M.: Towards the dual motivic Steenrod algebra in positive charac-teristic. arXiv:1711.05230 (2017) [32] Fujiwara, K.: A proof of the absolute purity conjecture (after Gabber). In: Algebraic Geometry 2000, Azumino (Hotaka), Adv. Stud. Pure Math. 36, Math. Soc. Japan, Tokyo, 153-183 (2002) Zbl 1059.14026 MR 1971516 [33] Fulton, W.: Intersection Theory. 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin (1998) Zbl 0885.14002 MR 1644323 · Zbl 0885.14002 [34] Fulton, W., MacPherson, R.: Categorical framework for the study of singular spaces. Mem. Amer. Math. Soc. 31, no. 243, vi+165 pp. (1981) Zbl 0467.55005 MR 609831 · Zbl 0467.55005 [35] Gaitsgory, D., Rozenblyum, N.: A Study in Derived Algebraic Geometry. Vol. II. Deform-ations, Lie Theory and Formal Geometry. Math. Surveys Monogr. 221, Amer. Math. Soc., Providence, RI (2017) Zbl 1408.14001 MR 3701353 · Zbl 1409.14003 [36] Garkusha, G., Panin, I.: Framed motives of algebraic varieties (after V. Voevodsky). J. Amer. Math. Soc. 34, 261-313 (2021) Zbl 07304882 MR 4188819 · Zbl 1491.14034 [37] Grothendieck, A.: Cohomologie‘-adique et fonctions L. Lecture Notes in Math. 589, Springer (1977) Zbl 0345.00011 MR 0491704 [38] Hartshorne, R.: Residues and Duality. Lecture notes of a seminar on the work of A. Grothen-dieck, given at Harvard 1963/64. Lecture Notes in Math. 20, Springer, Berlin (1966) Zbl 0212.26101 MR 0222093 · Zbl 0212.26101 [39] Hornbostel, J.: A 1 -representability of Hermitian K-theory and Witt groups. Topology 44, 661-687 (2005) Zbl 1078.19004 MR 2122220 · Zbl 1078.19004 [40] Hoyois, M.: A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula. Algebr. Geom. Topol. 14, 3603-3658 (2014) Zbl 1351.14013 MR 3302973 · Zbl 1351.14013 [41] Illusie, L.: Complexe cotangent et déformations. I. Lecture Notes in Math. 239, Springer, Berlin (1971) Zbl 0224.13014 MR 0491680 [42] Illusie, L., Laszlo, Y., Orgogozo, F. (eds.): Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents. Soc. Math. de France, Paris (2014) Zbl 1297.14003 MR 33090886 · Zbl 1297.14003 [43] Jin, F.: Borel-Moore motivic homology and weight structure on mixed motives. Math. Z. 283, 1149-1183 (2016) Zbl 1375.14023 MR 3519998 · Zbl 1375.14023 [44] Jin, F., Yang, E.: Künneth formulas for motives and additivity of traces. Adv. Math. 376, art. 107446, 83 pp. (2021) Zbl 07282548 MR 4178918 · Zbl 1490.14034 [45] Kass, J. L., Wickelgren, K.: The class of Eisenbud-Khimshiashvili-Levine is the local A 1 -Brouwer degree. Duke Math. J. 168, 429-469 (2019) Zbl 1412.14014 MR 3909901 · Zbl 1412.14014 [46] Khan, A. A.: Motivic homotopy theory in derived algebraic geometry. Ph.D. thesis, Univ. Duisburg-Essen, httpsW//www.preschema.com/thesis/ (2016) [47] Khan, A. A.: Virtual fundamental classes of derived stacks I. arXiv:1909.01332 (2019) [48] Levine, M.: The intrinsic stable normal cone. arXiv:1703.03056 (2017) [49] Levine, M.: Toward an enumerative geometry with quadratic forms. arXiv:1703.03049 (2017) [50] Levine, M., Raksit, A.: Motivic Gauss-Bonnet formulas. Algebra Number Theory 14, 1801-1851 (2020) Zbl 07248673 MR 4150251 · Zbl 1458.14029 [51] Liu, Y., Zheng, W.: Enhanced six operations and base change theorem for higher Artin stacks. arXiv:1211.5948 (2012) [52] Lurie, J.: Higher algebra. www.math.harvard.edu/ lurie/papers/HigherAlgebra.pdf (2012) [53] Morel, F.: A 1 -algebraic Topology over a Field. Lecture Notes in Math. 2052, Springer, Heidel-berg (2012) Zbl 1263.14003 MR 2934577 [54] Morel, F., Voevodsky, V.: A 1 -homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math. 90, 45-143 (2001) (1999) Zbl 0983.14007 MR 1813224 [55] Navarro, A.: Riemann-Roch for homotopy invariant K-theory and Gysin morphisms. Adv. Math. 328, 501-554 (2018) Zbl 1391.14017 MR 3771136 · Zbl 1391.14017 [56] Nenashev, A.: Gysin maps in Balmer-Witt theory. J. Pure Appl. Algebra 211, 203-221 (2007) Zbl 1140.11024 MR 2333767 · Zbl 1140.11024 [57] Panin, I., Walter, C.: On the algebraic cobordism spectra MSL and MSp. arXiv:1011.0651v2 (2018) [58] Panin, I., Walter, C.: On the motivic commutative ring spectrum BO. Algebra i Analiz 30, 43-96 (2018); reprinted in St. Petersburg Math. J. 30, 933-972 (2019) Zbl 1428.14011 MR 3882540 [59] Pepin Lehalleur, S.: Triangulated categories of relative 1-motives. Adv. Math. 347, 473-596 (2019) Zbl 1422.18012 MR 3920833 · Zbl 1422.18012 [60] Riou, J.: Algebraic K-theory, A 1 -homotopy and Riemann-Roch theorems. J. Topol. 3, 229-264 (2010) Zbl 1202.19004 MR 2651359 · Zbl 1202.19004 [61] Robalo, M.: Motivic homotopy theory of non-commutative spaces. Ph.D. thesis, Univ. de Montpellier, httpsW//webusers.imj-prg.fr/ marco.robalo/these.pdf (2014) [62] Robalo, M.: K-theory and the bridge from motives to noncommutative motives. Adv. Math. 269, 399-550 (2015) Zbl 1315.14030 MR 3281141 · Zbl 1315.14030 [63] Rost, M.: Chow groups with coefficients. Doc. Math. 1, 319-393 (1996) Zbl 0864.14002 MR 1418952 · Zbl 0864.14002 [64] Swan, R. G.: Néron-Popescu desingularization. In: Algebra and Geometry (Taipei, 1995), Lect. Algebra Geom. 2, Int. Press, Cambridge, MA, 135-192 (1998) Zbl 0954.13003 MR 1697953 [65] Thomason, R. W.: Absolute cohomological purity. Bull. Soc. Math. France 112, 397-406 (1984) Zbl 0584.14007 MR 794741 · Zbl 0584.14007 [66] Verdier, J.-L.: Le théorème de Riemann-Roch pour les intersections complètes. In: Séminaire de géométrie analytique (Paris, 1974-75), Astérisque 36-37, 189-228 (1976) Zbl 0334.14026 MR 0444657 · Zbl 0334.14026 [67] Voevodsky, V.: A 1 -homotopy theory. In: Proc. Int. Congress of Mathematicians, Vol. I (Berlin, 1998), Doc. Math. 1998, Extra Vol. I, 579-604 Zbl 0334.14026 MR 1648048 [68] Voevodsky, V.: Notes on framed correspondences. Unpublished, httpW//www.math.ias.edu/ vladimir/files/framed.pdf (2001) [69] Voevodsky, V., Suslin, A., Friedlander, E. M.: Cycles, Transfers, and Motivic Homology The-ories. Ann. of Math. Stud. 143, Princeton Univ. Press, Princeton, NJ (2000) MR 1764197 · Zbl 1021.14006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.