×

Relative dispersion with finite inertial ranges. (English) Zbl 1508.76063

Summary: Relative dispersion experiments are often analysed using theoretical predictions from two- and three-dimensional turbulence. These apply to infinite inertial ranges, assuming the same dispersive behaviour over all scales. With finite inertial ranges, the metrics are less conclusive. We examine this using pair separation probability density functions (PDFs), obtained by integrating a Fokker-Planck equation with different diffusivity profiles. We consider time-based metrics, such as the relative dispersion, and separation-based metrics, such as the finite scale Lyapunov exponent (FSLE). As the latter cannot be calculated from a PDF, we introduce a new measure, the cumulative inverse separation time (CIST), which can. This behaves like the FSLE, but advantageously has analytical solutions in the inertial ranges. This allows the establishment of consistency between the time- and space-based metrics, something which has been lacking previously. We focus on three dispersion regimes: non-local spreading (as in a two-dimensional enstrophy inertial range), Richardson dispersion (as in an energy inertial range) and diffusion (for uncorrelated pair motion). The time-based metrics are more successful with non-local dispersion, as the corresponding PDF applies from the initial time. Richardson dispersion is barely observed, because the self-similar PDF applies only asymptotically in time. In contrast, the separation-based CIST correctly captures the dependencies, even with a short (one decade) inertial range, and is superior to the traditional FSLE at large scales. Nevertheless, it is advantageous to use all measures together, to seek consistent indications of the dispersion.

MSC:

76F55 Statistical turbulence modeling
76R99 Diffusion and convection
76R50 Diffusion
86A05 Hydrology, hydrography, oceanography
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Artale, V., Boffetta, G., Celani, A., Cencini, M. & Vulpiani, A.1997Dispersion of passive tracers in closed basins: beyond the diffusion coefficient. Phys. Fluids9, 3162-3171. · Zbl 1185.76736
[2] Aurell, E., Boffetta, G., Crisianti, A., Paladin, G. & Vulpiani, A.1997Predictability in the large: an extension of the concept of Lyapunov exponent. J. Phys. A30, 1-26. · Zbl 0930.76037
[3] Babiano, A., Basdevant, C., Leroy, P. & Sadourny, R.1990Relative dispersion in two-dimensional turbulence. J. Fluid Mech.214, 535-557. · Zbl 0699.76068
[4] Balwada, D., Lacasce, J.H. & Speer, K.G.2016Scale dependent distribution of kinetic energy in the gulf of Mexico. Geophys. Res. Let.43 (20), 10856-10863.
[5] Balwada, D., Lacasce, J.H., Speer, K.G. & Ferrari, R.2021Relative dispersion in the Antarctic circumpolar current. J. Phys. Oceanogr.51, 553-574.
[6] Batchelor, G.K.1952Diffusion in a field of homogeneous turbulence. II. The relative motion of particles. Proc. Camb. Phil. Soc.48, 345-362. · Zbl 0046.42106
[7] Batchelor, G.K.1953The Theory of Homogeneous Turbulence. Cambridge University Press. · Zbl 0053.14404
[8] Bennett, A.F.2006Lagrangian Fluid Dynamics. Cambridge University Press. · Zbl 1105.76002
[9] Beron-Vera, F.J. & Lacasce, J.H.2016Statistics of simulated and observed pair separations in the Gulf of Mexico. J. Phys. Oceanogr.46, 2183-2199.
[10] Berti, S. & Lapeyre, G.2021Lagrangian pair dispersion in upper-ocean turbulence in the presence of mixed-layer instabilities. Phys. Fluids33, 036603.
[11] Boffetta, G. & Sokolov, I.M.2002Statistics of two-particle dispersion in two-dimensional turbulence. Phys. Fluids14 (9), 3224-3232. · Zbl 1185.76059
[12] Bracco, A., Choi, J., Joshi, K., Luo, H. & Mcwilliams, J.C.2016Submesoscale currents in the northern Gulf of Mexico: deep phenomena and dispersion over the continental slope. Ocean Model.101, 43-58.
[13] Cencini, M. & Vulpiani, A.2013Finite size Lyapunov exponent: review on applications. J. Phys. A46, 254019. · Zbl 1351.37119
[14] Corrado, R., Lacorata, G., Palatella, L., Santoleri, R. & Zambianchi, E.2017General characteristics of relative dispersion in the ocean. Sci. Rep.7, 1-11.
[15] Dräger-Dietel, J., Jochumsen, K., Griesel, A. & Badin, G.2018Relative dispersion of surface drifters in the Benguela upwelling region. J. Phys. Oceanogr.48, 2325-2341.
[16] Er-El, J. & Peskin, R.1981Relative diffusion of constant-level balloons in the Southern Hemisphere. J. Atmos. Sci.38, 2264-2274.
[17] Essink, S., Hormann, V., Centurioni, L.R. & Mahadevan, A.2019Can we detect submesoscale motions in drifter pair dispersion?J. Phys. Oceanogr.49, 2237-2254.
[18] Flierl, G.R., Malanotte-Rizzoli, P. & Nabusky, N.J.1987Nonlinear waves and coherent vortex structures in barotropic \(\beta \)-plane jets. J. Phys. Oceanogr.17, 1408-1438.
[19] Foussard, A., Berti, S., Perrot, X. & Lapeyre, G.2017Relative dispersion in generalized two-dimensional turbulence. J. Fluid Mech.821, 358-383. · Zbl 1383.76207
[20] Graff, L.S., Guttu, S. & Lacasce, J.H.2015Relative dispersion in the atmosphere from reanalysis winds. J. Atmos. Sci.72, 2769-2785.
[21] Haza, A.C., Poje, A.C., Özgökmen, T.M. & Martin, P.2008Relative dispersion from a high-resolution coastal model of the Adriatic Sea. Ocean Model.22, 48-65.
[22] Koszalka, I., Lacasce, J.H. & Orvik, K.A.2009Relative dispersion in the Nordic Seas. J. Mar. Res.67 (4), 411-433.
[23] Kraichnan, R.H.1966Dispersion of particle pairs in homogeneous turbulence. Phys. Fluids9, 1937-1943.
[24] Kraichnan, R.H.1967Inertial ranges in two-dimensional turbulence. Phys. Fluids10, 1417-1423.
[25] Lacasce, J.H.2000Floats and f/H. J. Mar. Res.58, 61-95.
[26] Lacasce, J.H.2008Statistics from Lagrangian observations. Prog. Oceanogr.77, 1-29. · Zbl 1298.76169
[27] Lacasce, J.H.2010Relative displacement probability distribution functions from balloons and drifters. J. Mar. Res.68, 433-457.
[28] Lacasce, J.H.2016Estimating Eulerian energy spectra from drifters. Fluids1 (4), 33.
[29] Lacasce, J.H. & Bower, A.2000Relative dispersion at the surface in the subsurface North Atlantic. J. Mar. Res.58, 863-894.
[30] Lacasce, J.H., Ferrari, R., Marshall, J., Tulloch, R., Balwada, D. & Speer, K.2014Float-derived isopycnal diffusivities in the DIMES experiment. J. Phys. Oceanogr.44, 764-780.
[31] Lacasce, J.H. & Ohlmann, C.2003Relative dispersion at the surface of the Gulf of Mexico. J. Mar. Res.61, 285-312.
[32] Lacorata, G., Aurell, E., Legras, B. & Vulpiani, A.2004Evidence for a \(\kappa^-5/3\) spectrum from the EOLE Lagrangian balloons in the low stratosphere. J. Atmos. Sci.61, 2936-2942.
[33] Lacorata, G., Aurell, E. & Vulpiani, A.2001Drifter dispersion in the Adriatic Sea: Lagrangian data and chaotic model. Ann. Geophys.19, 121-129.
[34] Lin, J.-T.1972Relative dispersion in the enstrophy-cascading inertial range of homogeneous two-dimensional turbulence. J. Atmos. Sci.29, 394-395.
[35] Lindborg, E.2015A Helmholtz decomposition of structure functions and spectra calculated from aircraft data. J. Fluid Mech.762, R4.
[36] Lumpkin, R. & Ellipot, S.2010Surface drifter pair spreading in the North Atlantic. J. Geophys. Res.115, C12017.
[37] Lumpkin, R., Özgökmen, T. & Centurioni, L.2017Advances in the application of surface drifters. Annu. Rev. Mar. Sci.9, 59-81.
[38] Lumpkin, R. & Pazos, M.2007 Measuring surface currents with Surface Velocity Program drifters: the instrument, its data, and some recent results. In Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics (ed. Teresa S. Hawley & Robert G. Hawley), p. 67. Cambridge University Press. · Zbl 1142.76336
[39] Lundgren, T.S.1981Turbulent pair dispersion and scalar diffusion. J. Fluid Mech.111, 27-57. · Zbl 0485.76064
[40] Mantovanelli, A., Heron, M.L., Heron, S.F. & Steinberg, C.R.2012Relative dispersion of surface drifters in a barrier reef region. J. Geophys. Res.117, C11016.
[41] Meunier, T. & Lacasce, J.H.2021Finite size Lyapunov exponent and finite amplitude growth rate. Fluids6 (10), 348.
[42] Morel, P. & Larcheveque, M.1974Relative dispersion of constant-level balloons in the 200 mb general circulation. J. Atmos. Sci.31, 2189-2196.
[43] Nastrom, G.D. & Gage, K.S.1985A climatology of atmospheric wavenumber spectra of wind and temperature observed by commerical aircraft. J. Atmos. Sci.42, 959-960.
[44] Obhukov, A.M.1941Energy distribution in the spectrum of turbulent flow. Izv. Akad. Nauk SSSR Geogr. Geofiz.5 (8), 453-466.
[45] Ohlmann, J.C., Lacasce, J.H., Washburn, L., Mariano, A.J. & Emery, B.2012Relative dispersion observations and trajectory modeling in the Santa Barbara Channel. J. Geophys. Res.117, C05040.
[46] Ohlmann, J.C., Molemaker, M.J., Baschek, B., Holt, B., Marmorino, G. & Smith, G.2017Drifter observations of submesoscale flow kinematics in the coastal ocean. Geophys. Res. Let.44, 330-337.
[47] Ohlmann, J.C., White, P.F., Sybrandy, A.L. & Niiler, P.P.2005GPS-cellular drifter technology for coastal ocean observing systems. J. Atmos. Ocean. Technol.22, 1381-1388.
[48] Okubo, A.1971Oceanic diffusion diagrams. Deep-Sea Res.18 (8), 789-802.
[49] Ollitrault, M., Gabillet, C. & De Verdiere, A.C.2005Open ocean regimes of relative dispersion. J. Fluid Mech.533, 381-407. · Zbl 1076.76039
[50] Pearson, J., Fox-Kemper, B., Barkan, R., Choi, J., Bracco, A. & Mcwilliams, J.C.2019Impacts of convergence on structure functions from surface drifters in the Gulf of Mexico. J. Phys. Oceanogr.49, 675-690.
[51] Poje, A.C., et al.2014Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl Acad. Sci. USA111 (35), 12693-12698.
[52] Richardson, L.F.1926Atmospheric diffusion on a distance-neighbour graph. Proc. R. Soc. Lond. A110, 709-737.
[53] Richardson, L.F. & Stommel, H.1948Note on eddy diffusion in the sea. J. Meteorol.5 (5), 238-240.
[54] Salazar, J.P.L.C. & Collins, L.R.2009Two particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech.41, 405-432. · Zbl 1159.76017
[55] Sansón, L.Z., Pérez-Brunius, P. & Sheinbaum, J.2017Surface relative dispersion in the southwestern Gulf of Mexico. J. Phys. Oceanogr.47, 387-403.
[56] Sawford, B.2001Turbulent relative dispersion. Annu. Rev. Fluid Mech.33, 289-317. · Zbl 1008.76024
[57] Schroeder, K., et al.2012Targeted lagrangian sampling of submesoscale dispersion at a coastal frontal zone. Geophys. Res. Lett.39, 289-317.
[58] Shcherbina, A.Y., et al.2015The LatMix summer campaign: submesoscale stirring in the upper ocean. Bull. Am. Meteorol. Soc.96, 1257-1279.
[59] Spydell, M.S., Feddersen, F. & Macmahan, J.2021Relative dispersion on the inner shelf: evidence of a Batchelor regime. J. Phys. Oceanogr.51, 519-536.
[60] Thomas, L.N., Tandon, A. & Mahadevan, A.2008 Submesoscale processes and dynamics. In Ocean Modeling in an Eddying Regime (ed. M.W. Hecht & H. Hasumi), vol. 177, pp. 17-38. John Wiley and Sons.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.