×

Numerical investigation of turbulence of surface gravity waves. (English) Zbl 1511.76040

Summary: In this paper, we numerically study the wave turbulence of surface gravity waves in the framework of Euler equations of the free surface. The purpose is to understand the variation of the scaling of the spectra with wavenumber \(k\) and energy flux \(P\) at different nonlinearity levels under different forcing/free-decay conditions. For all conditions (free decay and narrow-band and broad-band forcing) that we consider, we find that the spectral forms approach the wave turbulence theory (WTT) solution \(S_\eta \sim k^{-5/2}\) and \(S_\eta \sim P^{1/3}\) at high nonlinearity levels. With a decrease of nonlinearity level, the spectra for all cases become steeper, with the narrow-band forcing case exhibiting the most rapid deviation from WTT. We investigate bound waves and the finite-size effect as possible mechanisms causing the spectral variations. Through a tri-coherence analysis, we find that the finite-size effect is present in all cases, which is responsible for the overall steepening of the spectra and the reduced capacity of energy flux at lower nonlinearity levels. The fraction of bound waves in the domain generally decreases with the decrease of nonlinearity level, except for the narrow-band case, which exhibits a transition at a critical nonlinearity level below which a rapid increase is observed. This increase serves as the main reason for the fastest deviation from WTT with the decrease of nonlinearity in the narrow-band forcing case.

MSC:

76F05 Isotropic turbulence; homogeneous turbulence
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aubourg, Q. & Mordant, N.2016Investigation of resonances in gravity-capillary wave turbulence. Phys. Rev. Fluids1 (2), 023701.
[2] Bloomfield, P.2004Fourier Analysis of Time Series: An Introduction. John Wiley & Sons. · Zbl 0994.62093
[3] Campagne, A., Hassaini, R., Redor, I., Valran, T., Viboud, S., Sommeria, J. & Mordant, N.2019Identifying four-wave-resonant interactions in a surface gravity wave turbulence experiment. Phys. Rev. Fluids4 (7), 074801.
[4] Cobelli, P., Przadka, A., Petitjeans, P., Lagubeau, G., Pagneux, V. & Maurel, A.2011Different regimes for water wave turbulence. Phys. Rev. Lett.107 (21), 214503.
[5] Deike, L., Berhanu, M. & Falcon, E.2014Energy flux measurement from the dissipated energy in capillary wave turbulence. Phys. Rev. E89 (2), 023003.
[6] Deike, L., Miquel, B., Gutiérrez, P., Jamin, T., Semin, B., Berhanu, M., Falcon, E. & Bonnefoy, F.2015Role of the basin boundary conditions in gravity wave turbulence. J. Fluid Mech.781, 196-225. · Zbl 1359.76043
[7] Denissenko, P., Lukaschuk, S. & Nazarenko, S.2007Gravity wave turbulence in a laboratory flume. Phys. Rev. Lett.99 (1), 014501.
[8] Dommermuth, D.G. & Yue, D.K.P.1987A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech.184, 267-288. · Zbl 0638.76016
[9] Dyachenko, A.I., Korotkevich, A.O. & Zakharov, V.E.2004Weak turbulent kolmogorov spectrum for surface gravity waves. Phys. Rev. Lett.92 (13), 134501.
[10] Falcon, E., Laroche, C. & Fauve, S.2007Observation of gravity-capillary wave turbulence. Phys. Rev. Lett.98 (9), 094503.
[11] Faou, E., Germain, P. & Hani, Z.2016The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger equation. J. Am. Math. Soc.29 (4), 915-982. · Zbl 1364.35332
[12] Hammack, J.L. & Henderson, D.M.1993Resonant interactions among surface water waves. Annu. Rev. Fluid Mech.25 (1), 55-97.
[13] Herbert, E., Mordant, N. & Falcon, E.2010Observation of the nonlinear dispersion relation and spatial statistics of wave turbulence on the surface of a fluid. Phys. Rev. Lett.105 (14), 144502.
[14] Hrabski, A. & Pan, Y.2020Effect of discrete resonant manifold structure on discrete wave turbulence. Phys. Rev. E102 (4), 041101.
[15] Hrabski, A. & Pan, Y.2021 On the properties of energy flux in wave turbulence. arXiv:2110.07666.
[16] Hrabski, A., Pan, Y., Staffilani, G. & Wilson, B.2021 Energy transfer for solutions to the nonlinear schrödinger equation on irrational tori. arXiv:2107.01459.
[17] Issenmann, B. & Falcon, E.2013Gravity wave turbulence revealed by horizontal vibrations of the container. Phys. Rev. E87 (1), 011001.
[18] Kartashova, E.2006Fast computation algorithm for discrete resonances among gravity waves. J. Low Temp. Phys.145 (1), 287-295.
[19] Kartashova, E., Nazarenko, S. & Rudenko, O.2008Resonant interactions of nonlinear water waves in a finite basin. Phys. Rev. E78 (1), 016304.
[20] Kuznetsov, E.A.2004Turbulence spectra generated by singularities. J. Expl Theor. Phys. Lett.80 (2), 83-89.
[21] Lake, B.M. & Yuen, H.C.1978A new model for nonlinear wind waves. Part 1. Physical model and experimental evidence. J. Fluid Mech.88 (1), 33-62. · Zbl 0506.76010
[22] Longuet-Higgins, M.S.1992Capillary rollers and bores. J. Fluid Mech.240, 659-679. · Zbl 0759.76021
[23] Lvov, Y.V., Nazarenko, S. & Pokorni, B.2006Discreteness and its effect on water-wave turbulence. Physica D218 (1), 24-35. · Zbl 1331.76056
[24] Mei, C.C., Stiassnie, M. & Yue, D.K.-P.2005Theory and Applications of Ocean Surface Waves: Nonlinear Aspects, vol. 23. World Scientific. · Zbl 1112.76001
[25] Michel, G., Semin, B., Cazaubiel, A., Haudin, F., Humbert, T., Lepot, S., Bonnefoy, F., Berhanu, M. & Falcon, É.2018Self-similar gravity wave spectra resulting from the modulation of bound waves. Phys. Rev. Fluids3 (5), 054801.
[26] Nazarenko, S.2006Sandpile behaviour in discrete water-wave turbulence. J. Stat. Mech.2006 (2), L02002.
[27] Nazarenko, S., Lukaschuk, S., Mclelland, S. & Denissenko, P.2010Statistics of surface gravity wave turbulence in the space and time domains. J. Fluid Mech.642, 395-420. · Zbl 1183.76039
[28] Onorato, M., Osborne, A.R., Serio, M., Resio, D., Pushkarev, A., Zakharov, V.E. & Brandini, C.2002Freely decaying weak turbulence for sea surface gravity waves. Phys. Rev. Lett.89 (14), 144501.
[29] Pan, Y.2020High-order spectral method for the simulation of capillary waves with complete order consistency. J. Comput. Phys.408, 109299. · Zbl 07505624
[30] Pan, Y. & Yue, D.K.P.2014Direct numerical investigation of turbulence of capillary waves. Phys. Rev. Lett.113 (9), 094501.
[31] Pan, Y. & Yue, D.K.P.2015Decaying capillary wave turbulence under broad-scale dissipation. J. Fluid Mech.780, R1. · Zbl 1382.76136
[32] Pan, Y. & Yue, D.K.P.2017Understanding discrete capillary-wave turbulence using a quasi-resonant kinetic equation. J. Fluid Mech.816, R1. · Zbl 1383.76068
[33] Phillips, O.M.1958The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech.4 (4), 426-434. · Zbl 0080.19202
[34] Phillips, O.M.1981The dispersion of short wavelets in the presence of a dominant long wave. J. Fluid Mech.107, 465-485. · Zbl 0481.76023
[35] Plant, W.J.2003A new interpretation of sea-surface slope probability density functions. J. Geophys. Res. 665 108 (C9), 3295.
[36] Plant, W.J., Dahl, P.H., Giovanangeli, J.-P. & Branger, H.2004Bound and free surface waves in a large wind-wave tank. J. Geophys. Res.109, C10002.
[37] Plant, W.J., Keller, W.C., Hesany, V., Hara, T., Bock, E. & Donelan, M.A.1999Bound waves and bragg scattering in a wind-wave tank. J. Geophys. Res.104 (C2), 3243-3263.
[38] Pushkarev, A.N. & Zakharov, V.E.1996Turbulence of capillary waves. Phys. Rev. Lett.76 (18), 3320. · Zbl 0960.76039
[39] Pushkarev, A.N. & Zakharov, V.E.2000Turbulence of capillary waves-theory and numerical simulation. Physica D135 (1-2), 98-116. · Zbl 0960.76039
[40] Stuhlmeier, R. & Stiassnie, M.2019Nonlinear dispersion for ocean surface waves. J. Fluid Mech.859, 49-58. · Zbl 1415.76083
[41] Tanaka, M.2001Verification of hasselmann’s energy transfer among surface gravity waves by direct numerical simulations of primitive equations. J. Fluid Mech.444, 199-221. · Zbl 0995.76011
[42] West, B.J., Brueckner, K.A., Janda, R.S., Milder, D.M. & Milton, R.L.1987A new numerical method for surface hydrodynamics. J. Geophys. Res.92 (C11), 11803-11824.
[43] Xiao, W., Liu, Y., Wu, G. & Yue, D.K.P.2013Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution. J. Fluid Mech.720, 357-392. · Zbl 1284.76078
[44] Yokoyama, N.2004Statistics of gravity waves obtained by direct numerical simulation. J. Fluid Mech.501, 169-178. · Zbl 1051.76008
[45] Zakharov, V.E.1968Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys.9 (2), 190-194.
[46] Zakharov, V.E. & Filonenko, N.N.1967Energy spectrum for stochastic oscillations of the surface of a liquid. Sov. Phys. Dokl.11, 881.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.