×

Reduced order model approach for imaging with waves. (English) Zbl 07455593

Summary: We introduce a novel, computationally inexpensive approach for imaging with an active array of sensors, which probe an unknown medium with a pulse and measure the resulting waves. The imaging function is based on the principle of time reversal in non-attenuating media and uses a data driven estimate of the ‘internal wave’ originating from the vicinity of the imaging point and propagating to the sensors through the unknown medium. We explain how this estimate can be obtained using a reduced order model (ROM) for the wave propagation. We analyze the imaging function, connect it to the time reversal process and describe how its resolution depends on the aperture of the array, the bandwidth of the probing pulse and the medium through which the waves propagate. We also show how the internal wave can be used for selective focusing of waves at points in the imaging region. This can be implemented experimentally and can be used for pixel scanning imaging. We assess the performance of the imaging methods with numerical simulations and compare them to the conventional reverse-time migration method and the ‘backprojection’ method introduced recently as an application of the same ROM.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Nxx Numerical methods for partial differential equations, boundary value problems
35Rxx Miscellaneous topics in partial differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ammari, H.; Bretin, E.; Garnier, J.; Wahab, A., Time reversal in attenuating acoustic media, Contemp. Math., 548, 1-19 (2011) · Zbl 1232.35189 · doi:10.1090/conm/548/10841
[2] Ammari, H.; Garnier, J.; Jing, W.; Kang, H.; Lim, M.; Solna, K.; Wang, H., Mathematical and Statistical Methods for Multistatic Imaging (2013), Berlin: Springer, Berlin · Zbl 1288.35001
[3] Antoulas, A. C.; Sorensen, D. C.; Gugercin, S., A survey of model reduction methods for large-scale systems, Contemp. Math., 280, 193-219 (2001) · Zbl 1048.93014 · doi:10.1090/conm/280/04630
[4] Benner, P.; Gugercin, S.; Willcox, K., A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57, 483-531 (2015) · Zbl 1339.37089 · doi:10.1137/130932715
[5] Biondi, B. L., 3D Seismic Imaging (2006), Tulsa, OK: Society of Exploration Geophysicists, Tulsa, OK
[6] Borcea, L.; Druskin, V.; Mamonov, A.; Moskow, S.; Zaslavsky, M., Reduced order models for spectral domain inversion: embedding into the continuous problem and generation of internal data, Inverse Problems, 36 (2020) · Zbl 1478.65106 · doi:10.1088/1361-6420/ab750b
[7] Borcea, L.; Druskin, V.; Mamonov, A. V.; Zaslavsky, M., Untangling the nonlinearity in inverse scattering with data-driven reduced order models, Inverse Problems, 34 (2018) · Zbl 1507.65160 · doi:10.1088/1361-6420/aabb16
[8] Borcea, L.; Druskin, V.; Mamonov, A. V.; Zaslavsky, M., Robust nonlinear processing of active array data in inverse scattering via truncated reduced order models, J. Comput. Phys., 381, 1-26 (2019) · Zbl 1451.65136 · doi:10.1016/j.jcp.2018.12.021
[9] Borcea, L.; Druskin, V.; Mamonov, A. V.; Zaslavsky, M.; Zimmerling, J., Reduced order model approach to inverse scattering, SIAM J. Imag. Sci., 13, 685-723 (2020) · Zbl 1441.65073 · doi:10.1137/19m1296355
[10] Brunton, S.; Kutz, J., Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control (2019), Cambridge: Cambridge University Press, Cambridge · Zbl 1407.68002
[11] Brunton, S. L.; Proctor, J. L.; Kutz, J. N., Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl Acad. Sci. USA, 113, 3932-3937 (2016) · Zbl 1355.94013 · doi:10.1073/pnas.1517384113
[12] Cheney, M.; Borden, B., Fundamentals of Radar Imaging (2009), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 1192.78002
[13] Curlander, J.; McDonough, R., Synthetic Aperture Radar, vol 11 (1991), New York: Wiley, New York · Zbl 0997.94518
[14] Druskin, V.; Mamonov, A. V.; Thaler, A. E.; Zaslavsky, M., Direct, nonlinear inversion algorithm for hyperbolic problems via projection-based model reduction, SIAM J. Imag. Sci., 9, 684-747 (2016) · Zbl 1346.86007 · doi:10.1137/15m1039432
[15] Druskin, V.; Mamonov, A. V.; Zaslavsky, M., A nonlinear method for imaging with acoustic waves via reduced order model backprojection, SIAM J. Imag. Sci., 11, 164-196 (2018) · Zbl 1401.86006 · doi:10.1137/17m1133580
[16] Druskin, V.; Moskow, S.; Zaslavsky, M., Lippmann-Schwinger-Lanczos algorithm for inverse scattering problems, Inverse Problems, 37 (2021) · Zbl 1510.65287 · doi:10.1088/1361-6420/abfca4
[17] Fouque, J-P; Garnier, J.; Papanicolaou, G.; Solna, K., Wave Propagation and Time Reversal in Randomly Layered Media, vol 56 (2007), Berlin: Springer, Berlin · Zbl 1386.74001
[18] Herkt, S.; Hinze, M.; Pinnau, R., Convergence analysis of galerkin pod for linear second order evolution equations, Electron. Trans. Numer. Anal., 40, 321-337 (2013) · Zbl 1290.65090
[19] Hesthaven, J.; Rozza, G.; Stamm, B., Certified Reduced Basis Methods for Parametrized Partial Differential Equations, vol 590 (2016), Berlin: Springer, Berlin · Zbl 1329.65203
[20] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., 90, 117-148 (2001) · Zbl 1005.65112 · doi:10.1007/s002110100282
[21] Mauroy, A.; Mezić, I.; Susuki, Y., The Koopman Operator in Systems and Control. Concepts, Methodologies, and Applications, vol 484 (2020), Berlin: Springer, Berlin · Zbl 1448.93003 · doi:10.1007/978-3-030-35713-9
[22] McLean, W., Strongly Elliptic Systems and Boundary Integral Equations (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 0948.35001
[23] Sobel, I., History and definition of the Sobel operator (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.