×

Caputo-fabrizio fractional order model on MHD blood flow with heat and mass transfer through a porous vessel in the presence of thermal radiation. (English) Zbl 07457986

Summary: In this article we propose a fractional order time derivative model on blood flow, heat and mass transfer through an arterial segment having interaction with magnetic field in the presence of thermal radiation and body acceleration. The study focuses on the unidirectional blood flow through porous medium vessel by treating non-Newtonian Casson fluid model. The mathematical model of Caputo-Fabrizio fractional derivative has been used and the problem is solved by employing the Laplace transform as well as finite Hankel transform method. The analytical expressions for blood flow velocity, temperature and concentration are obtained. The effects of order of the Caputo-Fabrizio fractional derivative, external magnetic field, Reynolds number, Darcy number, thermal radiation, Peclet number, Schmidt number are presented graphically. The study shows that the fractional order parameter has reducing effect on blood velocity, temperature and concentration as well as on the skin-friction coefficient and Nusselt number. Moreover, Hartmann number, thermal radiation and Soret effect play an important role in controlling wall shear stress, Nusselt number and Sherwood number respectively. More precisely these results bear the significant applications in biomedical Engineering and pathology.

MSC:

82-XX Statistical mechanics, structure of matter
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tzirtzilakis, E. E., A mathematical model for blood flow in magnetic field, Phys. fluds, 17, 077103-077115 (2005) · Zbl 1187.76532
[2] Chato, J. C., Heat transfer to blood vessels, J. Biomech. Eng., 102, 2, 110-118 (1980)
[3] Shaw, S.; Murthy, P. V.S. N., Magnetic drug targeting in the permeable blood vessel- the effect of blood rheology, J. Nanotechnol. Eng. Med., 1, 2, 021001-021011 (2010)
[4] Shit, G. C.; Majee, S., Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment, J. Magn. Magn. Mater., 388, 106-115 (2015)
[5] Misra, J. C.; Shit, G. C., Flow of a biomagnatic visco-elastic fluid in a channel with streching walls, J. Appl. Mech., 76, 6, Article 061006 pp. (2009)
[6] Mondal, A.; Shit, G. C., Transport of magneto-nanoparticles druging electro-smotic flow in a micro-tube in the presence of magnetic field for drug delivary application, J. Magn. Magn. Mater., 442, 319-328 (2017)
[7] Bhatti, M. M.; Zeeshan, A.; Ellahi, R., Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of jeffrey nanofluid containing gyrotactic microorganism, Microvasc. Res., 110, 32-42 (2017)
[8] Abdulhameed, M.; Vieru, D.; Roslan, R., Modeling electro-magneto-hydrodynamic thermo-fluidic transport of biofluids with new trend of fractional derivative without singular kernel, Physica A, 484, 233-252 (2017) · Zbl 1499.76136
[9] Bhatti, M. M.; Zeeshan, A.; Ellahi, R., Endoscope analysis on peristaltic blood flow of sisko-fluid with titanium magneto-nanoparticles, Comput. Biol. Med., 78, 29-41 (2016)
[10] Zeeshan, A.; Bhatti, M. M.; Akbar, N. S.; Sajjad, Y., Hydromagnetic blood flow of sisko-fluid in a non-uniform channel induced by peristaltic wave, Commun. Theor. Phys., 68, 103-110 (2017) · Zbl 1370.76203
[11] Majee, S.; Shit, G. C., Numerical investigation of MHD flow of blood and heat transfer in a stenosed arterial segment, J. Magn. Magn. Mater., 424, 137-147 (2017)
[12] Akbar, N. S.; Butt, A. W., Entropy generation analysis in convective ferromagnetic nano blood flow through a composite stenosed arteries with permeable wall, Commun. Theor. Phys., 67, 554-560 (2017)
[13] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and breach Science Publishers · Zbl 0818.26003
[14] Das, S., Functional Fractional Calculus for System Identification and Controls (2008), Springer · Zbl 1154.26007
[15] Oldham, K.; spanier, J., The Fractional Calculus (1974), Academic press · Zbl 0428.26004
[16] Ortigueira, M. D., Fractional Calculus for Scientists and Engineers (2011), Springer: Springer New York · Zbl 1251.26005
[17] Baleanu, D.; Diethelem, K.; Scales, E.; Trujillo, J. J., Fractional Calculus Models and Numerical Methods (2012), World Scientific Publishing Company: World Scientific Publishing Company Singapore · Zbl 1248.26011
[18] MacDonald, D. A., On steady flow through modeled vascular stenosis, J. Biomech., 12, 1, 13-20 (1979)
[19] Caro, C. G.; Pedley, T. J.; Schroter, R. C.; Seed, W. A., The Mechanics of the Circulation (2012), Cambridge University Press · Zbl 1314.93004
[20] Liepsch, D., Flow in tubes and arteries- A comparison, Biorheology, 23, 395-433 (1986)
[21] Srivastava, L.; Srivastava, V., Peristaltic transport of blood: Casson model-11, J. Biomech., 17, 11, 821-829 (1984)
[22] Nagarani, P.; Sarojamma, G.; Jayaraman, G., Exact analysis of unsteady convective diffusion in casson fluid flow in an annulus-Application to catheterized artery, Acta Mech., 187, 189-202 (2006) · Zbl 1149.76602
[23] Venkatesan, J.; Sankar, D.; Hemalatha, K.; Yatim, Y., Mathematical analysis of casson fluid model for blood reeology in stenosed narrow arteries, J. Appl. Math., 2013, 1-11 (2013) · Zbl 1397.76193
[24] Hayat, T.; Asad, S.; Alsaedi, A., Flow of casson fluid with nanoparticles, Appl. Math. Mech., 37, 4 (2016), 459-470 · Zbl 1345.76006
[25] Ali, F.; Sheikh, N. A.; Khan, I.; Saqib, M., Magnetic field effect on blood flow of Casson fluid in axisymmetricc cylindrical tube: A fractional model, J. Magn. Magn. Mater., 423, 327-336 (2017)
[26] Saqib, M.; Khan, I.; Shafie, S., Generalized magnetic blood flow in a cylindrical tube with magnetite dusty particles, J. Magn. Magn. Mater., 484, 490-496 (2019)
[27] Morales-Delgado, V. F.; Gómez-Aguilar, J. F.; Saad, K. M.; Khan, M. A.; Agarwal, P., Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach, Physica A, 523, 48-65 (2019) · Zbl 07563353
[28] He, S.; Fataf, N. A.A.; Banerjee, S.; Sun, K., Complexity in the muscular blood vessel model with variable fractional derivative and external disturbances, Physica A, 526, Article 120904 pp. (2019) · Zbl 07566411
[29] Sharma, Sunil D.; Sharma, R. C., Effect of dust particles on thermal convection in ferromagnetic fluid saturating a porous medium, J. Magn. Magn. Mater., 288, 183-195 (2005)
[30] Ramesh, K.; Devakar, M., Magnetohydrodynamic peristaltic transport of couple stress fluid through porous medium in an inclined asymmetric channel with heat transfer, J. Magn. Magn. Mater., 394, 335-348 (2015)
[31] Shit, G. C.; Roy, M., Effect of slip velocity on peristaltic transport of a magneto-micropolar fluid through a porous non-uniform channel, Int. J. Appl. Comput. Math., 1, 121-141 (2015) · Zbl 1433.76197
[32] Bhatti, M. M.; Zeeshan, A.; Ellahi, R.; Bég, O. A.; Kadir, A., Effects of coagulation on the two-phase peristaltic pumping of magnetized prandtl biofluid through an endoscopic annular geometry containing a porous medium, Chin. J. Phys., 58, 222-234 (2019)
[33] Dash, R. K.; Mehta, K. N.; Jayaraman, G., Casson fluid flow in a pipe filled with homogeneous porous medium, Internat. J. Engrg. Sci., 34, 1146-1156 (1996) · Zbl 0900.76022
[34] Bhargava, R.; Rawat, S.; Takhar, H. S.; Beg, O. A., Pulsatile magneto-biofluid flow and mass transfer in a non-darcian porous medium channels, Meccanica, 42, 247-262 (2007) · Zbl 1162.76410
[35] Ghasemi, S. E.; Hatami, M.; Sarokolaie, A. K.; Ganji, D. D., Study on blood flow containing nanoparticles through porous arteries in presence of magnetic field using analytical methods, Physica E, 70, 146-156 (2015)
[36] Bhatti, M. M.; Zeeshan, A.; Ellahi, R.; Shit, G. C., Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-BrinkmanForchheimer porous medium, Adv. Powder Tech., 29, 1189-1197 (2018)
[37] Chinyoka, T.; Makinde, O. D., Computational dynamics of arterial blood flow in the presence of magnetic field and thermal radiation therapy, Adv. Math. Phys., Article 915640 pp. (2014) · Zbl 1291.76369
[38] Sinha, A.; Shit, G. C., Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation, J. Magn. Magn. Mater., 378, 143-151 (2015)
[39] Tabi, C. B.; Motsumi, T. G.; Kamdem, C. D.B.; Mohamadou, A., Nonlinear excitations of blood flow in large vessels under thermal radiations and uniform magnetic field, Commun. Nonl. Sci. Numer. Simul., 49, 1-8 (2017) · Zbl 1510.76226
[40] Alamri, S. Z.; Khan, A. A.; Azeez, M.; Ellahi, R., Effects of mass transfer on MHD second grade fluid towards stretching cylinder: A novel perspective of Cattaneo-Christov heat flux model, Phys. Lett. A, 383, 276-281 (2019) · Zbl 1429.76116
[41] Bhatti, M. M.; Zeeshan, A.; Ellahi, R., Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: clot blood model, Comput. Math. Prog. Biomed., 137, 115-124 (2016)
[42] Sud, V. K.; Sekhon, G. S., Blood flow subject to a single cycle of body acceleration, Bull. Math. Biol., 46, 937-949 (1984) · Zbl 0574.76128
[43] Ghasemi, S. E.; Hatami, M.; Hatami, J.; Sahebi, S. A.R.; Ganji, D. D., An efficient approach to study the pulsatile blood flow in femoral and coronary arteries by differential quadrature method, Physica A, 443, 406-414 (2016) · Zbl 1400.92156
[44] Chaturani, P.; Palanisamy, V., Casson fluid model for pulsatile flow of blood under periodic body acceleration, Biorheology, 27, 5, 619-630 (1990)
[45] Bhatti, M. M.; Lu, D. Q., Analytical study of the head-on collision process between hydroelastic solitary waves in the presence of a uniform current, symmetry, 11, 333 (2019) · Zbl 1423.76060
[46] Shit, G. C.; Roy, M., Pulsatile flow and heat transfer of a magneto-micropolar fluid through a stenosed artery under the influence of body acceleration, J. Mech. Med. Biol., 11, 3, 643-661 (2011)
[47] Ellahi, R., The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions, Appl. Math. Model., 37, 1451-1467 (2013) · Zbl 1351.76306
[48] Huda, A. B.; Akbar, N. S., Heat transfer analysis with temperature dependent viscosity for the peristaltic flow of nano-fluid with shape factor over heated tube, Int. J. Hydrog. Energy., 42, 25088-25101 (2017)
[49] Bansi, C. D.K.; Tabi, C. B.; Motsumi, T. G.; Mohamadoud, A., Fractional blood flow in oscillatory arteries with thermal radiation and magnetic field effects, J. Magn. Magn. Mater., 456, 38-45 (2018)
[50] Shah, N. A.; Vieru, D.; Fetecau, C., Effects of the fractionl order and magnetic field on the blood flow in cylindrical domains, J. Magn. Magn. Mater., 409, 10-19 (2016)
[51] Baleanu, D.; Agrawal, O., Fractional hamilton formalism within Caputo’s derivative, Can. J. Phys., 56, 10-11, 1087-1092 (2006) · Zbl 1111.37304
[52] Odibat, Z., Approximations of fractional integrals and Caputo’s fractional derivatives, Appl. Math. Comput., 178, 527-533 (2006) · Zbl 1101.65028
[53] Hayat, T.; Zahir, H.; Tanveer, A.; Alsaedi, A., Influences of hall current and chemical reaction in mixed convective peristaltic flow of prandtl fluid, J. Magn. Magn. Mater., 407, 321-327 (2016)
[54] Caputo, M.; Fabrizzio, M., A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1, 2, 73-85 (2015)
[55] Caputo, M.; Fabrizzio, M., Applications of new time and spatial fractional derivatives with exponential kernels, Prog. Fract. Differential Appl., 2, 1, 1-11 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.