×

Entropy dissipation at the junction for macroscopic traffic flow models. (English) Zbl 1513.76033

Summary: A maximum entropy dissipation problem at a traffic junction and the corresponding coupling condition are studied. We prove that this problem is equivalent to a coupling condition introduced by Holden and Risebro. An \(L^1\)-contraction property of the coupling condition and uniqueness of solutions to the Cauchy problem are proved. Existence is obtained by a kinetic approximation of Bhatnagar-Gross-Krook type together with a kinetic coupling condition obtained by a kinetic maximum entropy dissipation problem. The arguments do not require total variation bounds on the initial data compared to previous results. We also discuss the role of the entropies involved in the macroscopic coupling condition at the traffic junction by studying an example.

MSC:

76A30 Traffic and pedestrian flow models
35L65 Hyperbolic conservation laws
90B20 Traffic problems in operations research
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Adimurthi, S. Mishra, and G. D. V. Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions, J. Hyperbolic Differ. Equ., 2 (2005), pp. 783-837, https://doi.org/10.1142/S0219891605000622. · Zbl 1093.35045
[2] B. Andreianov, K. H. Karlsen, and N. H. Risebro, A theory of \(L^1\)-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011), pp. 27-86, https://doi.org/10.1007/s00205-010-0389-4. · Zbl 1261.35088
[3] B. P. Andreianov, G. M. Coclite, and C. Donadello, Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network, Discrete Contin. Dyn. Syst., 37 (2017), pp. 5913-5942, https://doi.org/10.3934/dcds.2017257. · Zbl 1368.90043
[4] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl., 135 (1983), pp. 293-318. · Zbl 0572.46023
[5] R. Borsche, J. Kall, A. Klar, and T. N. H. Pham, Kinetic and related macroscopic models for chemotaxis on networks, Math. Models Methods Appl. Sci., 26 (2016), pp. 1219-1242, https://doi.org/10.1142/S0218202516500299. · Zbl 1336.92013
[6] R. Borsche and A. Klar, Kinetic layers and coupling conditions for macroscopic equations on networks I: The wave equation, SIAM J. Sci. Comput., 40 (2018), pp. A1784-A1808, https://doi.org/10.1137/17M1138364. · Zbl 1394.82008
[7] R. Borsche and A. Klar, Kinetic layers and coupling conditions for nonlinear scalar equations on networks, Nonlinearity, 31 (2018), pp. 3512-3541. · Zbl 1391.82025
[8] R. Borsche, A. Klar, S. Kühn, and A. Meurer, Coupling traffic flow networks to pedestrian motion, Math. Models Methods Appl. Sci., 24 (2014), pp. 359-380, https://doi.org/10.1142/S0218202513400113. · Zbl 1279.90035
[9] A. Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, Oxford Lecture Ser. Math. Appl. 20, Oxford University Press, Oxford, UK, 2000. · Zbl 0997.35002
[10] A. Bressan, S. Čanić, M. Garavello, M. Herty, and B. Piccoli, Flows on networks: Recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), pp. 47-111. · Zbl 1301.35193
[11] A. Bressan and A. Nordli, The Riemann solver for traffic flow at an intersection with buffer of vanishing size, Netw. Heterog. Media, 12 (2017), pp. 173-189, https://doi.org/10.3934/nhm.2017007. · Zbl 1365.90093
[12] R. Bürger, K. H. Karlsen, and J. D. Towers, An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal., 47 (2009), pp. 1684-1712, https://doi.org/10.1137/07069314X. · Zbl 1201.35022
[13] G. M. Coclite, M. Garavello, and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), pp. 1862-1886, https://doi.org/10.1137/S0036141004402683. · Zbl 1114.90010
[14] G. M. Coclite and M. Garavello, Vanishing viscosity for traffic on networks, SIAM J. Math. Anal., 42 (2010), pp. 1761-1783, https://doi.org/10.1137/090771417. · Zbl 1217.90053
[15] C. M. Dafermos, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws, J. Differential Equations, 14 (1973), pp. 202-212. · Zbl 0262.35038
[16] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4th ed., Grundlehren Math. Wiss. 325, Springer-Verlag, Berlin, 2016, https://doi.org/10.1007/978-3-662-49451-6. · Zbl 1364.35003
[17] M. L. Delle Monache, P. Goatin, and B. Piccoli, Priority-based Riemann solver for traffic flow on networks, Commun. Math. Sci., 16 (2018), pp. 185-211, https://doi.org/10.4310/CMS.2018.v16.n1.a9. · Zbl 1395.90072
[18] U. S. Fjordholm, M. Musch, and N. H. Risebro, Well-Posedness Theory for Nonlinear Scalar Conservation Laws on Networks, preprint, https://arxiv.org/abs/2102.06400, 2021.
[19] M. Garavello, K. Han, and B. Piccoli, Models for Vehicular Traffic on Networks, AIMS Ser. Appl. Math. 9, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2016. · Zbl 1351.90045
[20] M. Garavello and B. Piccoli, Traffic Flow on Networks: Conservation Laws Models, AIMS Ser. Appl. Math. 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. · Zbl 1136.90012
[21] M. Herty and S. Moutari, A macro-kinetic hybrid model for traffic flow on road networks, Comput. Methods Appl. Math., 9 (2009), pp. 238-252, https://doi.org/10.2478/cmam-2009-0015. · Zbl 1194.35257
[22] H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), pp. 999-1017, https://doi.org/10.1137/S0036141093243289. · Zbl 0833.35089
[23] Y. Holle, Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks, J. Differential Equations, 269 (2020), pp. 1192-1225, https://doi.org/10.1016/j.jde.2020.01.005. · Zbl 1439.35324
[24] Y. Holle, M. Herty, and M. Westdickenberg, New coupling conditions for isentropic flow on networks, Netw. Heterog. Media, 15 (2020), pp. 605-631, https://doi.org/10.3934/nhm.2020016. · Zbl 1455.35193
[25] C. Imbert and J. Vovelle, A kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications, SIAM J. Math. Anal., 36 (2004), pp. 214-232, https://doi.org/10.1137/S003614100342468X. · Zbl 1085.35099
[26] S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), pp. 228-255 (in Russian). · Zbl 0202.11203
[27] Y.-S. Kwon, Well-posedness for entropy solutions to multidimensional scalar conservation laws with a strong boundary condition, J. Math. Anal. Appl., 340 (2008), pp. 543-549, https://doi.org/10.1016/j.jmaa.2007.08.035. · Zbl 1132.35417
[28] Y.-S. Kwon and A. Vasseur, Strong traces for solutions to scalar conservation laws with general flux, Arch. Ration. Mech. Anal., 185 (2007), pp. 495-513, https://doi.org/10.1007/s00205-007-0055-7. · Zbl 1121.35078
[29] J. P. Lebacque, Les modèles macroscopiques de trafic, Annales des Ponts et Chaussées, 1993 (1993), pp. 24-45.
[30] M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London Ser. A, 229 (1955), pp. 317-345, https://doi.org/10.1098/rspa.1955.0089. · Zbl 0064.20906
[31] P.-L. Lions, B. Perthame, and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc., 7 (1994), pp. 169-191, https://doi.org/10.2307/2152725. · Zbl 0820.35094
[32] E. Y. Panov, On the strong precompactness of bounded sets of measure-valued solutions of a first-order quasilinear equation, Mat. Sb., 186 (1995), pp. 103-114 (in Russian), https://doi.org/10.1070/SM1995v186n05ABEH000039. · Zbl 0839.35139
[33] E. Y. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ., 4 (2007), pp. 729-770, https://doi.org/10.1142/S0219891607001343. · Zbl 1144.35037
[34] B. Perthame, Kinetic Formulation of Conservation Laws, Oxford Lecture Ser. Math. Appl. 21, Oxford University Press, Oxford, UK, 2002. · Zbl 1030.35002
[35] B. Perthame and E. Tadmor, A kinetic equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys., 136 (1991), pp. 501-517, https://doi.org/10.1007/BF02099071. · Zbl 0729.76070
[36] P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), pp. 42-51, https://doi.org/10.1287/opre.4.1.42. · Zbl 1414.90094
[37] A. F. Vasseur, A rigorous derivation of the coupling of a kinetic equation and Burgers’ equation, Arch. Ration. Mech. Anal., 206 (2012), pp. 1-30, https://doi.org/10.1007/s00205-012-0558-8. · Zbl 1256.35047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.