×

CFD simulations of hydrogen deflagration in slow and fast combustion regime. (English) Zbl 1516.80007

MSC:

80A25 Combustion

Software:

ANSYS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Camp, A. L.; Cummings, J. C.; Sherman, M. P.; Kupiec, C. F.; Healy, R. J.; Caplan, J. S.; Sandhop, J. R.; Saunders, J. H., Light Water Reactor Hydrogen Manual (1983), U.S. Nuclear Regulatory Commission: U.S. Nuclear Regulatory Commission, Washington, DC
[2] OECD/NEA/CSNI, OECD / SETH-2 Project PANDA and MISTRA Experiments Final Summary Report - Investigation of Key Issues for the Simulation of Thermal- hydraulic Conditions in Water Reactor Containment (2012), OECD
[3] OECD/NEA/CSNI, Aerosol and Iodine Issues, and Hydrogen Mitigation under Accidental Conditions in Watercooled Reactors: Thermal-hydraulics, Hydrogen, Aerosols and Iodine (THAI-2) Project - Final Report (2017), OECD
[4] OECD/NEA/CSNI, Hydrogen and Fission Product Issues Relevant for Containment Safety Assessment under Severe Accident Conditions (2010), OECD
[5] OECD/NEA/CSNI, Status Report on Hydrogen Management and Related Computer Codes (2015), OECD
[6] van Dorsselaere, J. P., SARNET 2 final report (2014)
[7] Paladino, D.; Guentay, S.; Andreani, M.; Tkatschenko, I.; Brinster, J.; Dabbene, F.; Kelm, S.; Allelein, H. J.; Visser, D. C.; Benz, S.; Jordan, T.; Liang, Z.; Porcheron, E.; Malet, J.; Bentaib, A.; Kiselev, A.; Yudina, T.; Filippov, A.; Khizbullin, A.; Kamnev, M.; Zaytsev, A.; Loukianov, A., The euratom-rosatom ercosam-samara projects on containment thermal-hydraulics of current and future LWRs for severe accident management, Int. Congr. Adv. Nucl. Power Plants 2012, ICAPP 2012, 2, 1359-1368 (2012)
[8] Bentaib, A.; Meynet, N.; Bleyer, A.; Grosseuvres, R., MITHYGENE hydrogen deflagration Benchmark main outcomes and conclusions, Nuthos, 11, 1-13 (2016)
[9] Bentaib, A.; Bleyer, A.; Chaumeix, N.; Schramm, B.; Kostka, P.; Movahed, M.; Kang, H. S.; Povilaitis, M., Final results of the SARNET Hydrogen deflagration Benchmark Effect of turbulence on flame acceleration, 1-15 (2012)
[10] Bentaib, A.; Bleyer, A.; Meynet, N.; Chaumeix, N.; Schramm, B.; Höhne, M.; Kostka, P.; Movahed, M.; Worapittayaporn, S.; Brähler, T.; Seok-Kang, H.; Povilaitis, M.; Kljenak, I.; Sathiah, P., SARNET hydrogen deflagration benchmarks: main outcomes and conclusions, Ann Nucl Energy, 74, 143-152 (2014) · doi:10.1016/j.anucene.2014.07.012
[11] Cherbański, R.; Molga, E., CFD modelling of hydrogen deflagration in the ENACCEF facility, Inżynieria i Apar. Chem, 56, 62-63 (2017)
[12] Allelein, H.-J.; Arndt, S.; Klein-Heßling, W.; Schwarz, S.; Spengler, C.; Weber, G., COCOSYS: Status of development and validation of the German containment code system, Nucl. Eng. Des, 238, 872-889 (2008) · doi:10.1016/j.nucengdes.2007.08.006
[13] van Dorsselaere, J. P.; Seropian, C.; Chatelard, P.; Jacq, F.; Fleurot, J.; Giordano, P.; Reinke, N.; Schwinges, B.; Allelein, H. J.; Luther, W., The ASTEC Integral code for severe Accident simulation, Nucl. Technol, 165, 293-307 (2009) · doi:10.13182/NT09-A4102
[14] Summers, R. M.; Cole, R. K.J.; Boucheron, E. A.; Carmel, M. K.; Dingman, S. E.; Kelly, J. E.; (Sandia N. L. Kelly Albuquerque, NM (USA)), MELCOR 1. 8. 0: A Computer Code for Nuclear Reactor Severe Accident Source Term and Risk Assessment Analyses (1991), United States
[15] Stempniewicz, M. M. (2018)
[16] Sathiah, P.; Van Haren, S.; Komen, E.; Roekaerts, D., The role of CFD combustion modeling in hydrogen safety management - II: Validation based on homogeneous hydrogen-air experiments, Nucl. Eng. Des, 252, 289-302 (2012) · doi:10.1016/j.nucengdes.2012.06.023
[17] Xiao, J.; Travis, J. R.; Kuznetsov, M., Numerical investigations of heat losses to confinement structures from hydrogen-air turbulent flames in ENACCEF facility, Int J Hydrogen Energy, 40, 13106-13120 (2015) · doi:10.1016/j.ijhydene.2015.07.090
[18] Halouane, Y.; Dehbi, A., CFD simulations of premixed hydrogen combustion using the Eddy Dissipation and the turbulent flame Closure models, Int J Hydrogen Energy, 42, 21990-22004 (2017) · doi:10.1016/j.ijhydene.2017.07.075
[19] Magnussen, B. F.; Hjertager, B. H., On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Symp. Combust, 16, 719-729 (1977) · doi:10.1016/S0082-0784(77)80366-4
[20] Zimont, V. L., Theory of turbulent combustion of a homogeneous fuel mixture at high reynolds numbers, Combust Explos Shock Waves, 15, 305-311 (1979) · doi:10.1007/BF00785062
[21] Morley, C., GASEQ Windows-based Computer Program for Equilibrium Calculations (2005)
[22] ANSYS Inc., ANSYS Fluent, Release 19.1, Help System, Theory Guide (2018), ANSYS Inc.: ANSYS Inc., Canonsburg, PA
[23] Liu, D. D.S.; MacFarlane, R., Laminar burning velocities of hydrogen-air and hydrogen-air-steam flames, Combust Flame, 49, 59-71 (1983) · doi:10.1016/0010-2180(83)90151-7
[24] Leckner, B., Spectral and total emissivity of water vapor and Carbon Dioxide, Combust Flame, 19, 33-48 (1972) · doi:10.1016/S0010-2180(72)80084-1
[25] Viskanta, R., Radiation heat transfer in combustion systems, Prog. Energy Combust. Sci, 13, 97-160 (1987) · doi:10.1016/0360-1285(87)90008-6
[26] Matalon, M.; Metzener, P., The propagation of premixed flames in closed tubes, J. Fluid Mech, 336, 331-350 (1997) · Zbl 0889.76093 · doi:10.1017/S0022112096004843
[27] Xiao, H.; An, W.; Duan, Q.; Sun, J., Dynamics of premixed hydrogen/air flame in a closed combustion vessel, Int J Hydrogen Energy, 38, 12856-12864 (2013) · doi:10.1016/j.ijhydene.2013.07.082
[28] Guénoche, H.; Markstein, George H., Chapter E - Flame Propagation in Tubes and in Closed Vessels, AGARDograph, 75, 107-181 (1964), Elsevier: Elsevier, Amsterdam · doi:10.1016/B978-1-4831-9659-6.50008-1
[29] Launder, B. E.; Spalding, D. B., The numerical computation of turbulent flows, Comput. Methods Appl. Mech. Eng, 3, 269-289 (1974) · Zbl 0277.76049 · doi:10.1016/0045-7825(74)90029-2
[30] Zimont, V.; Polifke, W.; Bettelini, M.; Weisenstein, W., An efficient computational model for premixed turbulent combustion at high reynolds numbers based on a turbulent flame speed closure, J Eng Gas Turbines Power, 120, 526-532 (1998) · doi:10.1115/1.2818178
[31] Lipatnikov, A.; Chomiak, J., Turbulent burning velocity and speed of developing, curved, and strained flames, 30th Int. Symp. Combust, 29, 2113-2121 (2002) · doi:10.1016/S1540-7489(02)80257-7
[32] Verbecke, Franck, Formation and Combustion of Non-Uniform Hydrogen-Air Mixtures (2009), University of Ulster: University of Ulster, Ulster
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.