×

Parameter estimation from ICC curves. (English) Zbl 1484.92121

Summary: Incidence vs. cumulative cases (ICC) curves are introduced and shown to provide a simple framework for parameter identification in the case of the most elementary epidemiological model, consisting of susceptible, infected, and removed compartments. This novel methodology is used to estimate the basic reproduction ratio of recent outbreaks, including those associated with the ongoing COVID-19 pandemic.

MSC:

92D30 Epidemiology

Software:

Maple
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Britton, N.F., Essential Mathematical Biology, Springer Undergraduate Mathematics Series, 3rd ed., 2005, pp. 90-93. Available at https://www.springer.com/us/book/9781852335366. · Zbl 1079.55001
[2] Chowell, G., Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts, Infect. Dis. Model., 2, 379-398 (2017) · doi:10.1016/j.idm.2017.08.001
[3] Diekmann, O.; Heesterbeek, J. A.P.; Metz, J. A.J., On the definition and the computation of the basic reproduction ratio \(####\) in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28, 365-382 (1990) · Zbl 0726.92018 · doi:10.1007/BF00178324
[4] Diekmann, O.; Heesterbeek, J. A.P.; Roberts, M. G., The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7, 873-885 (2010) · doi:10.1098/rsif.2009.0386
[5] Eisenberg, M. C.; Robertson, S. L.; Tien, J. H., Identifiability and estimation of multiple transmission pathways in cholera and waterborne diseases, J. Theor. Biol., 324, 84-102 (2013) · Zbl 1314.92156 · doi:10.1016/j.jtbi.2012.12.021
[6] Evans, N.; White, L.; Chapman, M.; Godfrey, K.; Chappell, M., The structural identifiability of the susceptible infected recovered model with seasonal forcing, Math. Biosci., 194, 175-197 (2005) · Zbl 1065.92040 · doi:10.1016/j.mbs.2004.10.011
[7] Endo, A.; van Leeuwenb, E.; Baguelin, M., Introduction to particle Markov-chain monte carlo for disease dynamics modellers, Epidemics, 29 (2019) · doi:10.1016/j.epidem.2019.100363
[8] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 599-653 (2000) · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[9] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond., A115, 700-721 (1927) · JFM 53.0517.01 · doi:10.1098/rspa.1927.0118
[10] King, A. A.; Domenech de Celles, M.; Magpantay, F. M.G.; Rohani, P., Avoidable errors in the modelling of outbreaks of emerging pathogens, with special reference to ebola, Proc. R. Soc. B., 282 (2015) · doi:10.1098/rspb.2015.0347
[11] Lega, J.; Brown, H. E., Data-driven outbreak forecasting with a simple nonlinear growth model, Epidemics, 17, 19-26 (2016) · doi:10.1016/j.epidem.2016.10.002
[12] Luque Fernández, M.A., Galmés Truyols, A., Herrera Guibert, D., Arbona Cerdá, G. and Sancho Gayá, F., Cohort study of an outbreak of viral gastroenteritis in a nursing home for elderly, Majorca, Spain, February 2008, Euro Surveill. 13(51) (2008), pii=19070. Available at https://www.eurosurveillance.org/content/.
[13] Maple. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario, 2018.
[14] Miao, H.; Xia, X.; Perelson, A. S.; Wu, H., On identifiability of nonlinear ODE models and applications in viral dynamics, SIAM Rev., 53, 3-39 (2011) · Zbl 1215.34015 · doi:10.1137/090757009
[15] Roda, W. C.; Varughese, M. B.; Han, D.; Li, M. Y., Why is it difficult to accurately predict the COVID-19 epidemic?, Infect. Dis. Model., 5, 271-291 (2020) · doi:10.1016/j.idm.2020.03.001
[16] Roosa, K.; Chowell, G., Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models, Theor. Biol. Medical Model., 16, 1 (2019) · doi:10.1186/s12976-018-0097-6
[17] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[18] Tuncer, N.; Le, T. T., Structural and practical identifiability analysis of outbreak models, Math. Biosci., 299, 1-18 (2018) · Zbl 1393.92053 · doi:10.1016/j.mbs.2018.02.004
[19] WHO. Coronavirus disease (COVID-2019) situation reports. Available at https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.
[20] Wu, J. T.; Leung, K.; Leung, G. M., Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet, 395, 689-697 (2020) · doi:10.1016/S0140-6736(20)30260-9
[21] Wuhan Health Municipal Commission. Available at http://wjw.wuhan.gov.cn/.
[22] See also the MIDAS Network dashboard, which lists estimates of \(####\) in a range of preprints. Available at https://midasnetwork.us/covid-19/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.