×

Constraints on axionic fuzzy dark matter from light bending and Shapiro time delay. (English) Zbl 1487.83065


MSC:

83C56 Dark matter and dark energy
83C50 Electromagnetic fields in general relativity and gravitational theory
78A45 Diffraction, scattering
81V25 Other elementary particle theory in quantum theory
81U90 Particle decays
81V19 Other fundamental interactions in quantum theory
81V05 Strong interaction, including quantum chromodynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Rubin, V. C.; Thonnard, N.; Ford, W. K. Jr., Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/, Astrophys. J., 238, 471 (1980) · doi:10.1086/158003
[2] Persic, Massimo; Salucci, Paolo; Stel, Fulvio, The Universal rotation curve of spiral galaxies: 1. The Dark matter connection, Mon. Not. Roy. Astron. Soc., 281, 27 (1996) · doi:10.1093/mnras/278.1.27
[3] Clowe, Douglas; Gonzalez, Anthony; Markevitch, Maxim, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter, Astrophys. J., 604, 596-603 (2004) · doi:10.1086/381970
[4] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13 (2016) · doi:10.1051/0004-6361/201525830
[5] Jungman, Gerard; Kamionkowski, Marc; Griest, Kim, Supersymmetric dark matter, Phys. Rept., 267, 195-373 (1996) · doi:10.1016/0370-1573(95)00058-5
[6] LUX Collaboration; Akerib, D. S., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett., 112 (2014) · doi:10.1103/PhysRevLett.112.091303
[7] PandaX-II Collaboration; Cui, Xiangyi, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.181302
[8] XENON Collaboration; Aprile, E., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett., 121 (2018) · doi:10.1103/PhysRevLett.121.111302
[9] Moore, B., Evidence against dissipationless dark matter from observations of galaxy haloes, Nature, 370, 629 (1994) · doi:10.1038/370629a0
[10] Oh, Se-Heon, High-resolution mass models of dwarf galaxies from LITTLE THINGS, Astron. J., 149, 180 (2015) · doi:10.1088/0004-6256/149/6/180
[11] Hall, Lawrence J.; Jedamzik, Karsten; March-Russell, John; West, Stephen M., Freeze-In Production of FIMP Dark Matter, JHEP, 03, 080 (2010) · Zbl 1271.83088 · doi:10.1007/JHEP03(2010)080
[12] Hochberg, Yonit; Kuflik, Eric; Volansky, Tomer; Wacker, Jay G., Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett., 113 (2014) · doi:10.1103/PhysRevLett.113.171301
[13] Hu, Wayne; Barkana, Rennan; Gruzinov, Andrei, Cold and fuzzy dark matter, Phys. Rev. Lett., 85, 1158-1161 (2000) · doi:10.1103/PhysRevLett.85.1158
[14] Boyarsky, A.; Drewes, M.; Lasserre, T.; Mertens, S.; Ruchayskiy, O., Sterile neutrino Dark Matter, Prog. Part. Nucl. Phys., 104, 1-45 (2019) · doi:10.1016/j.ppnp.2018.07.004
[15] Duffy, Leanne D.; van Bibber, Karl, Axions as Dark Matter Particles, New J. Phys., 11 (2009) · doi:10.1088/1367-2630/11/10/105008
[16] Kumar Poddar, Tanmay; Mohanty, Subhendra; Jana, Soumya, Constraints on ultralight axions from compact binary systems, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.083007
[17] Hui, Lam; Ostriker, Jeremiah P.; Tremaine, Scott; Witten, Edward, Ultralight scalars as cosmological dark matter, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.043541
[18] Kumar Poddar, Tanmay; Mohanty, Subhendra; Jana, Soumya, Vector gauge boson radiation from compact binary systems in a gauged L_μ-L_τ scenario, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.123023
[19] Kumar Poddar, Tanmay; Mohanty, Subhendra; Jana, Soumya, Constraints on long range force from perihelion precession of planets in a gauged L_e-L_μ,τ scenario, Eur. Phys. J. C, 81, 286 (2021) · doi:10.1140/epjc/s10052-021-09078-9
[20] Carr, Bernard; Kuhnel, Florian; Sandstad, Marit, Primordial Black Holes as Dark Matter, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.083504
[21] Lacki, Brian C.; Beacom, John F., Primordial Black Holes as Dark Matter: Almost All or Almost Nothing, Astrophys. J. Lett., 720, L67-L71 (2010) · doi:10.1088/2041-8205/720/1/L67
[22] Khlopov, M.; Malomed, B. A.; Zeldovich, Ia. B., Gravitational instability of scalar fields and formation of primordial black holes, Mon. Not. Roy. Astron. Soc., 215, 575-589 (1985)
[23] Salucci, Paolo, The distribution of dark matter in galaxies, Astron. Astrophys. Rev., 27, 2 (2019) · doi:10.1007/s00159-018-0113-1
[24] Peccei, R. D.; Quinn, Helen R., CP Conservation in the Presence of Instantons, Phys. Rev. Lett., 38, 1440-1443 (1977) · doi:10.1103/PhysRevLett.38.1440
[25] Weinberg, Steven, A New Light Boson?, Phys. Rev. Lett., 40, 223-226 (1978) · doi:10.1103/PhysRevLett.40.223
[26] Wilczek, Frank, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett., 40, 279-282 (1978) · doi:10.1103/PhysRevLett.40.279
[27] Peccei, R. D.; Quinn, Helen R., Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D, 16, 1791-1797 (1977) · doi:10.1103/PhysRevD.16.1791
[28] Adler, Stephen L., Axial vector vertex in spinor electrodynamics, Phys. Rev., 177, 2426-2438 (1969) · doi:10.1103/PhysRev.177.2426
[29] Bell, J. S.; Jackiw, R., A PCAC puzzle: π^0 →γγ in the σ model, Nuovo Cim. A, 60, 47-61 (1969) · doi:10.1007/BF02823296
[30] Baker, C. A., An Improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett., 97 (2006) · doi:10.1103/PhysRevLett.97.131801
[31] Profumo, Stefano; Giani, Leonardo; Piattella, Oliver F., An Introduction to Particle Dark Matter, Universe, 5, 213 (2019) · doi:10.3390/universe5100213
[32] Svrcek, Peter; Witten, Edward, Axions In String Theory, JHEP, 06, 051 (2006) · doi:10.1088/1126-6708/2006/06/051
[33] Inoue, Y.; Akimoto, Y.; Ohta, R.; Mizumoto, T.; Yamamoto, A.; Minowa, M., Search for solar axions with mass around 1 eV using coherent conversion of axions into photons, Phys. Lett. B, 668, 93-97 (2008) · doi:10.1016/j.physletb.2008.08.020
[34] CAST Collaboration; Arik, E., Probing eV-scale axions with CAST, JCAP, 02 (2009) · doi:10.1088/1475-7516/2009/02/008
[35] Hannestad, Steen; Mirizzi, Alessandro; Raffelt, Georg, New cosmological mass limit on thermal relic axions, JCAP, 07 (2005) · doi:10.1088/1475-7516/2005/07/002
[36] Melchiorri, Alessandro; Mena, Olga; Slosar, Anze, An improved cosmological bound on the thermal axion mass, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.041303
[37] Hannestad, Steen; Mirizzi, Alessandro; Raffelt, Georg G.; Wong, Yvonne Y. Y., Cosmological constraints on neutrino plus axion hot dark matter: Update after WMAP-5, JCAP, 04 (2008) · doi:10.1088/1475-7516/2008/04/019
[38] Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.; Wong, Yvonne Y. Y., Isocurvature forecast in the anthropic axion window, JCAP, 06 (2009) · doi:10.1088/1475-7516/2009/06/022
[39] Semertzidis, Y.; Cameron, R.; Cantatore, G.; Melissinos, A. C.; Rogers, J.; Halama, H., Limits on the Production of Light Scalar and Pseudoscalar Particles, Phys. Rev. Lett., 64, 2988-2991 (1990) · doi:10.1103/PhysRevLett.64.2988
[40] Cameron, R., Search for nearly massless, weakly coupled particles by optical techniques, Phys. Rev. D, 47, 3707-3725 (1993) · doi:10.1103/PhysRevD.47.3707
[41] Robilliard, Cecile; Battesti, Remy; Fouche, Mathilde; Mauchain, Julien; Sautivet, Anne-Marie; Amiranoff, Francois, No light shining through a wall, Phys. Rev. Lett., 99 (2007) · doi:10.1103/PhysRevLett.99.190403
[42] GammeV (T-969) Collaboration; Chou, Aaron S.; Wester, William Carl III; Baumbaugh, A.; Gustafson, H. Richard; Irizarry-Valle, Y.; Mazur, P. O., Search for axion-like particles using a variable baseline photon regeneration technique, Phys. Rev. Lett., 100 (2008) · doi:10.1103/PhysRevLett.100.080402
[43] Sikivie, P.; Tanner, D. B.; van Bibber, Karl, Resonantly enhanced axion-photon regeneration, Phys. Rev. Lett., 98 (2007) · doi:10.1103/PhysRevLett.98.172002
[44] Kim, Jihn E., Light Pseudoscalars, Particle Physics and Cosmology, Phys. Rept., 150, 1-177 (1987) · doi:10.1016/0370-1573(87)90017-2
[45] Cheng, Hai-Yang, The Strong CP Problem Revisited, Phys. Rept., 158, 1 (1988) · doi:10.1016/0370-1573(88)90135-4
[46] Rosenberg, L. J.; van Bibber, K. A., Searches for invisible axions, Phys. Rept., 325, 1-39 (2000) · doi:10.1016/S0370-1573(99)00045-9
[47] Hertzberg, Mark P.; Tegmark, Max; Wilczek, Frank, Axion Cosmology and the Energy Scale of Inflation, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.083507
[48] Visinelli, Luca; Gondolo, Paolo, Dark Matter Axions Revisited, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.035024
[49] Battye, R. A.; Shellard, E. P. S., Axion string constraints, Phys. Rev. Lett., 73, 2954-2957 (1994) · doi:10.1103/PhysRevLett.73.2954
[50] Yamaguchi, Masahide; Kawasaki, M.; Yokoyama, Jun’ichi, Evolution of axionic strings and spectrum of axions radiated from them, Phys. Rev. Lett., 82, 4578-4581 (1999) · doi:10.1103/PhysRevLett.82.4578
[51] Hagmann, C.; Chang, Sanghyeon; Sikivie, P., Axion radiation from strings, Phys. Rev. D, 63 (2001) · doi:10.1103/PhysRevD.63.125018
[52] Huang, Guo-Yuan; Nath, Newton, Neutrinophilic Axion-Like Dark Matter, Eur. Phys. J. C, 78, 922 (2018) · doi:10.1140/epjc/s10052-018-6391-y
[53] Plascencia, Alexis D.; Urbano, Alfredo, Black hole superradiance and polarization-dependent bending of light, JCAP, 04 (2018) · doi:10.1088/1475-7516/2018/04/059
[54] Chen, Yifan; Shu, Jing; Xue, Xiao; Yuan, Qiang; Zhao, Yue, Probing Axions with Event Horizon Telescope Polarimetric Measurements, Phys. Rev. Lett., 124 (2020) · doi:10.1103/PhysRevLett.124.061102
[55] Liu, Tao; Smoot, George; Zhao, Yue, Detecting axionlike dark matter with linearly polarized pulsar light, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.063012
[56] Sigl, Günter; Trivedi, Pranjal, Axion-like Dark Matter Constraints from CMB Birefringence (2018)
[57] Poddar, Tanmay Kumar; Mohanty, Subhendra, Probing the angle of birefringence due to long range axion hair from pulsars, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.083029
[58] Preskill, John; Wise, Mark B.; Wilczek, Frank; Srednicki, M. A., Cosmology of the Invisible Axion, Phys. Lett. B, 120, 127-132 (1983) · doi:10.1016/0370-2693(83)90637-8
[59] Abbott, L. F.; Sikivie, P.; Srednicki, M. A., A Cosmological Bound on the Invisible Axion, Phys. Lett. B, 120, 133-136 (1983) · doi:10.1016/0370-2693(83)90638-X
[60] Dine, Michael; Fischler, Willy; Srednicki, M. A., The Not So Harmless Axion, Phys. Lett. B, 120, 137-141 (1983) · doi:10.1016/0370-2693(83)90639-1
[61] Moody, J. E.; Wilczek, Frank, NEW MACROSCOPIC FORCES?, Phys. Rev. D, 30, 130 (1984) · doi:10.1103/PhysRevD.30.130
[62] Raffelt, Georg, Limits on a CP-violating scalar axion-nucleon interaction, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.015001
[63] Hook, Anson; Huang, Junwu, Probing axions with neutron star inspirals and other stellar processes, JHEP, 06, 036 (2018) · Zbl 1395.85005 · doi:10.1007/JHEP06(2018)036
[64] Will, Clifford M., The Confrontation between General Relativity and Experiment, Living Rev. Rel., 17, 4 (2014) · Zbl 1316.83019 · doi:10.12942/lrr-2014-4
[65] Will, Clifford M., The 1919 measurement of the deflection of light, Class. Quant. Grav., 32 (2015) · doi:10.1088/0264-9381/32/12/124001
[66] Einstein, Albert; Hsu, Jong-Ping; Fine, D., The Foundation of the General Theory of Relativity, Annalen Phys., 49, 769-822 (1916) · doi:10.1002/andp.200590044
[67] Fomalont, E.; Kopeikin, S.; Lanyi, G.; Benson, J., Progress in Measurements of the Gravitational Bending of Radio Waves Using the VLBA, Astrophys. J., 699, 1395-1402 (2009) · doi:10.1088/0004-637X/699/2/1395
[68] Shapiro, Irwin I., Fourth Test of General Relativity, Phys. Rev. Lett., 13, 789-791 (1964) · doi:10.1103/PhysRevLett.13.789
[69] Shapiro, Irwin I.; Pettengill, Gordon H.; Ash, Michael E.; Stone, Melvin L.; Smith, William B.; Ingalls, Richard P., Fourth Test of General Relativity: Preliminary Results, Phys. Rev. Lett., 20, 1265-1269 (1968) · doi:10.1103/PhysRevLett.20.1265
[70] Bertotti, B.; Iess, L.; Tortora, P., A test of general relativity using radio links with the Cassini spacecraft, Nature, 425, 374-376 (2003) · doi:10.1038/nature01997
[71] Kahya, Emre O.; Desai, Shantanu, Constraints on frequency-dependent violations of Shapiro delay from GW150914, Phys. Lett. B, 756, 265-267 (2016) · doi:10.1016/j.physletb.2016.03.033
[72] Boran, Sibel; Desai, Shantanu; Kahya, Emre O., Constraints on differential Shapiro delay between neutrinos and photons from IceCube-170922A, Eur. Phys. J. C, 79, 185 (2019) · doi:10.1140/epjc/s10052-019-6695-6
[73] Alarcon, J. M.; Martin Camalich, J.; Oller, J. A., The chiral representation of the π N scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.051503
[74] Enqvist, Kari; Hardwick, Robert J.; Tenkanen, Tommi; Vennin, Vincent; Wands, David, A novel way to determine the scale of inflation, JCAP, 02 (2018) · doi:10.1088/1475-7516/2018/02/006
[75] Kobayashi, Takeshi; Murgia, Riccardo; De Simone, Andrea; Iršič, Vid; Viel, Matteo, Lyman-α constraints on ultralight scalar dark matter: Implications for the early and late universe, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.123514
[76] Iršič, Vid; Viel, Matteo; Haehnelt, Martin G.; Bolton, James S.; Becker, George D., First constraints on fuzzy dark matter from Lyman-α forest data and hydrodynamical simulations, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.031302
[77] Benito, María; Criado, Juan Carlos; Hütsi, Gert; Raidal, Martti; Veermäe, Hardi, Implications of Milky Way substructures for the nature of dark matter, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.103023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.