×

Weighted nonstandard quadrature formulas based on values of linear differential operators. (English) Zbl 1490.65040

The paper starts with a literature survey of several extensions and variations of Gaussian quadrature formulas that make use of values for the integrand and its (higher order) derivatives in the free and/or prefixed quadrature nodes and still keep a maximal polynomial degree of exactness. The main contribution is the construction of a quadrature formula with real nodes of the form \(\int_a^b f(x)w(x)dx\approx\sum_{k=1}^n w_k \mathcal{L}[f](x_k)\) where \(\mathcal{L}[f](x)=A(x)f(x)+B(x)f'(x)\) is a differential operator where \(A\) and \(B\) are predefined continuous functions and \(B(x)>0\) in \([a,b]\). The integrand is continuously differentiable and vanishes at \(\lambda\in\mathbb{R}\). Note that \(\lambda\) need not be in \([a,b]\) but continuity conditions need to hold in the interval that contains both \([a,b]\) and \(\lambda\). It is proved how the nodes and the weights can be computed such that the quadrature has algebraic degree of exactness \(2n\). It boils down to finding nodes and weights for a Gaussian quadrature formula for an auxiliary weight. The latter is characterized by its moments. Several numerical examples based on Mathematica software illustrate the result.

MSC:

65D32 Numerical quadrature and cubature formulas
65D30 Numerical integration
41A55 Approximate quadratures
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gauss, C. F., Methodus nova integralium valores per approximationem inveniendi, commentationes societatis regiae scientarium göttingensis recentiores, vol. 3 (1814), [Werke III, 163-196]
[2] Jacobi, C. G.J., Über Gaußs neue Methode, die Werte der Integrale näherungsweise zu finden, J. Reine Angew. Math., 30, 301-308 (1826) · ERAM 001.0029cj
[3] Gautschi, W., A survey of Gauss-Christoffel quadrature formulae, (Butzer, P. L.; Fehér, F., E.B. Christoffel – the Influence of His Work on Mathematics and the Physical Sciences (1981), Birkhäuser: Birkhäuser Basel), 72-147 · Zbl 0479.65001
[4] Golub, G.; Welsch, J. H., Calculation of gauss quadrature rules, Math. Comp., 23, 221-230 (1969) · Zbl 0179.21901
[5] Szegő, G., Orthogonal Polynomials (1975), Amer. Math. Soc. Providence: Amer. Math. Soc. Providence RI · JFM 61.0386.03
[6] Chihara, S. A., An Introduction to Orthogonal Polynomials (1978), Gordon and Breach: Gordon and Breach New York · Zbl 0389.33008
[7] Gautschi, W., Orthogonal Polynomials: Computation and Approximation (2004), Oxford University Press: Oxford University Press New York · Zbl 1130.42300
[8] Mastroianni, G.; Milovanović, G. V., Interpolation processes – basic theory and applications, (Springer Monographs in Mathematics (2008), Springer - Verlag: Springer - Verlag Berlin - Heidelberg) · Zbl 1154.41001
[9] Gautschi, W., On generating orthogonal polynomials, SIAM J. Sci. Stat. Comput., 3, 289-317 (1982) · Zbl 0482.65011
[10] Milovanović, G. V., Chapter 11: Orthogonal polynomials on the real line, (Brezinski, C.; Sameh, A., Walter Gautschi: Selected Works with Commentaries, 2 (2014), Birkhäuser: Birkhäuser Basel), 3-16
[11] Milovanović, G. V., Construction and applications of gaussian quadratures with nonclassical and exotic weight functions, Stud. Univ. BabeŞ-Bolyai Math., 60, 2, 211-233 (2015) · Zbl 1374.33016
[12] Wuytack, L., Numerical integration by using nonlinear techniques, J. Comput. Appl. Math., 1, 4, 267-272 (1975) · Zbl 0315.65011
[13] Werner, H.; Wuytack, L., Nonlinear quadrature rules in the presence of a singularity, Comput. Math. Appl., 4, 3, 237-245 (1978) · Zbl 0388.65009
[14] Xu, Y., A characterization of positive quadrature formulae, Math. Comp., 62, 703-718 (1994) · Zbl 0799.65020
[15] Bultheel, A.; Cruz-Barroso, R.; Van Barel, M., On gauss-type quadrature formulas with prescribed nodes anywhere on the real line, Calcolo, 47, 21-48 (2010) · Zbl 1186.65029
[16] Chakalov, L., Über eine allgemeine quadraturformel, C. R. Acad. Bulgare Sci., 1, 2-3, 9-12 (1948) · Zbl 0037.04401
[17] Chakalov, L., General quadrature formulae of Gaussian type, Bulgar. Akad. Nauk Izv. Mat. Inst.. Bulgar. Akad. Nauk Izv. Mat. Inst., East J. Approx., 1, 261-276 (1995), English transl. · Zbl 0852.41023
[18] Chakalov, L., Formules générales de quadrature mécanique du type de Gauss, Colloq. Math., 5, 69-73 (1957) · Zbl 0081.05801
[19] Turán, P., On the theory of the mechanical quadrature, Acta Sci. Math. Szeged, 12, 30-37 (1950) · Zbl 0045.33606
[20] Popoviciu, T., Sur une généralisation de la formule d’intégration numérique de Gauss, (Acad. R.P. Romîne Fil. Iaşi Stud. Cerc. şti. Mat., Vol.6 (1955)), 29-57 · Zbl 0068.05003
[21] Ghizzetti, A.; Ossicini, A., Quadrature Formulae (1970), Akademie Verlag: Akademie Verlag Berlin · Zbl 0194.36901
[22] Ghizzetti, A.; Ossicini, A., Sull’ esistenza e unicità delle formule di quadratura gaussiane, Rend. Mat., 8, 6, 1-15 (1975) · Zbl 0303.65021
[23] D.D. Stancu, On a class of orthogonal polynomials and on some general quadrature formulas with minimum number of terms, Bull. Math. Soc. Sci. Math. Phys. R. P. Romîne (N.S).
[24] D.D. Stancu, On certain general numerical integration formulas, Acad. R. P. Romîne. Stud. Cerc. Mat..
[25] Stroud, A. H.; Stancu, D. D., Quadrature formulas with multiple gaussian modes, J. Soc. Indust. Appl. Math. Ser. B, Numer. Anal., 2, 129-143 (1965) · Zbl 0141.13803
[26] Stancu, D. D., Sur quelques formules générales de quadrature du type Gauss-Christoffel, Math. (Cluj), 24, 1, 167-182 (1959) · Zbl 0094.11503
[27] Golub, G. H.; Kautsky, J., Calculation of gauss quadratures with multiple free and fixed knots, Numer. Math., 41, 147-163 (1983) · Zbl 0525.65010
[28] Gautschi, W., Orthogonal polynomials: applications and computation, Acta Numer., 5, 45-119 (1996) · Zbl 0871.65011
[29] Stancu, D. D.; Stroud, A. H., Quadrature formulas with simple gaussian nodes and multiple fixed nodes, Math. Comp., 17, 384-394 (1963) · Zbl 0233.65013
[30] Milovanović, G. V., Construction of \(s\)-orthogonal polynomials and Turán quadrature formulae, (Numerical Methods and Approximation Theory III (NiŠ, 1987) (G.V. MilovanoviĆ, Ed.) (1988), Univ. Niš, Niš), 311-328 · Zbl 0643.65011
[31] Gautschi, W.; Milovanović, G. V., \(S\)-Orthogonality and construction of Gauss-turán type quadrature formulae, J. Comput. Appl. Math., 86, 205-218 (1997) · Zbl 0890.65021
[32] Milovanović, G. V., Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation, (Gautschi, (W.; Marcellan, F.; Reichel, L., Numerical Analysis 2000, V, Quadrature and Orthogonal Polynomials, 127 (2001)), 267-286, J. Comput. Appl. Math. · Zbl 0989.65045
[33] Milovanović, G. V., Numerical quadratures and orthogonal polynomials, Stud. Univ. BabeŞ-Bolyai Math., 56, 2, 449-464 (2011)
[34] Gautschi, W., High-precision Gauss-turán quadrature rules for Laguerre and hermite weight functions, Numer. Algorithms, 67, 59-72 (2014) · Zbl 1298.65041
[35] Milovanović, G. V.; Pranić, M. S.; Spalević, M. M., Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation, part II, Appl. Anal. Discrete Math., 13, 1-27 (2019) · Zbl 1499.65089
[36] Turán, P., On some open problems of approximation theory, J. Approx. Theory, 29, 23-85 (1980) · Zbl 0454.41001
[37] Varma, A. K., On Birkhoff quadrature formulas, Proc. Amer. Math. Soc., 97, 38-40 (1986) · Zbl 0599.41049
[38] Dimitrov, D. K., On a problem of Turán: \( ( 0 , 2 )\) quadrature formula with a high algebraic degree of precision, Aequationes Math., 41, 168-171 (1991) · Zbl 0731.41027
[39] Milovanović, G. V.; Varma, A. K., On Birkhoff \(( 0 , 3 )\) and \(( 0 , 4 )\) quadrature formulae, Numer. Funct. Anal. Optim., 18, 427-433 (1997) · Zbl 0880.41003
[40] Hammer, P. C.; Wicke, H. H., Quadrature formulas involving derivatives of the integrand, Math. Comp., 14, 3-7 (1960) · Zbl 0121.11701
[41] Struble, G., Tables for use in quadrature formulas involving derivatives of the integrand, Math. Comp., 14, 8-12 (1960) · Zbl 0121.11702
[42] Patterson, T. N.L., Integration formulae involving derivatives, Math. Comp., 23, 411-412 (1969) · Zbl 0194.18603
[43] Hammer, P. C.; Marlowe, O. J.; Stroud, A. H., Numerical integration over simplexes and cones, Math. Tables Aids Comput., 10, 130-137 (1956) · Zbl 0070.35404
[44] Fishman, H., Numerical integration constants, Math. Tables Aids Comput., 11, 1-9 (1957) · Zbl 0077.33002
[45] Masjed-Jamei, M., A new type of weighted quadrature rules and its relation with orthogonal polynomials, Appl. Math. Comput., 188, 154-165 (2007) · Zbl 1114.41020
[46] Milovanović, G. V.; Cvetković, A. S., Gaussian Quadrature rules using function derivatives, IMA J. Numer. Anal., 31, 358-377 (2011) · Zbl 1222.41037
[47] Welfert, B. D., On quadrature formulae based on derivative collocation, Appl. Math. Comput., 204, 647-657 (2008) · Zbl 1185.65047
[48] Struble, G. W., Orthogonal polynomials: variable-signed weight functions, Numer. Math., 5, 88-94 (1963) · Zbl 0107.05502
[49] Masjed-Jamei, M.; Milovanović, G. V., Weighted hermite quadrature rules, Electron. Trans. Numer. Anal., 45, 476-498 (2016) · Zbl 1355.65044
[50] Milovanović, G. V.; Cvetković, A. S., Nonstandard Gaussian quadrature formulae based on operator values, Adv. Comput. Math., 32, 431-486 (2010) · Zbl 1190.65042
[51] Cvetković, A. S.; Milovanović, G. V., The mathematica package orthogonal polynomials, Facta Univ. Ser. Math. Inf., 19, 17-36 (2004) · Zbl 1081.33001
[52] Milovanović, G. V.; Cvetković, A. S., Special classes of orthogonal polynomials and corresponding quadratures of Gaussian type, Math. Balkanica, 26, 169-184 (2012) · Zbl 1272.33013
[53] Kamke, È., Manual of ordinary differential equations, supplemented by translations by n. h. Rozov of excerpts of articles by d. s. Mitrinović and j. Zbornik (translated from the sixth German edition and revised in accordance with the eighth German edition by s. V. Fomin), Izdat. Nauka, Moscow (1971), (Russian)
[54] Gautschi, W.; Milovanović, G. V., Gaussian quadrature involving einstein and fermi functions with an application to summation of series, Math. Comp.. Math. Comp., Math. Comp., 44, S1-S11 (1985) · Zbl 0576.65012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.