×

On the modeling of restrained torsional warping: an analysis of two formulations. (English) Zbl 1492.74095

Summary: This work considers the modeling of torsion in elastic shafts accounting for the non-uniform warping of the cross sections along them. In this paper, we present an analysis of (1) the original formulation of Timoshenko-Wagner-Kappus-Vlasov, consisting of the underlying Saint-Venant torsion but with a non-constant rate of twist defining the warping magnitude, and (2) the alternative formulation first considered by Reissner-Benscoter-Vlasov involving an independent field for the warping amplitude. The theoretical results presented here characterize the kinematically constrained character of the first of these formulations, noting in the process the anomalies resulting from the full restrainment of the warping at a cross section in this setting. New explicit expressions for the warping shear stress and other features are obtained in this context. The second formulation relaxes the constraint between warping and twisting, with the analyses presented here identifying explicitly for the first time how its enforcement can be achieved in a limit process controlled by a parameter depending on the cross-sectional geometry. Hence, it avoids the anomalies of the first formulation, but at the price to involve local stresses not in equilibrium, a situation that does not seem to be much present in the literature.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74A05 Kinematics of deformation
74B05 Classical linear elasticity
74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Armero, F.: On the modeling of restrained torsional warping in prismatic elastic shafts (a full report). UCB/SEMM Report 2021/03, University of California, Berkeley, CA (2021)
[2] Benscoter, SU, A theory of torsion bending for multi-cell beams, J. Appl. Mech., 20, 25-34 (1954) · Zbl 0056.17802 · doi:10.1115/1.4010814
[3] Bredt, R.: Kritische bemerkungen zur drehunfselasticität. Z. Ver. Dtsch. Ing. 40(785-790), 813-817 (1896). (in German) · JFM 27.0686.03
[4] Burgoyne, CJ; Brown, EH, Nonuniform elastic torsion, Int. J. Mech. Sci., 36, 23-38 (1994) · Zbl 0807.73032 · doi:10.1016/0020-7403(94)90004-3
[5] Coulomb, C.A.: Recherches théoriques et expérimentales sur la force de torsion et sur l’élasticité des fils de métal. Mém. Acad. Sci. pp. 229-269 (1784) (in French)
[6] Epstein, M.; Segev, R., Vlasov’s beam paradigm and multivector grassmann statics, Math. Mech. Solids, 24, 3167-3179 (2019) · Zbl 07273360 · doi:10.1177/1081286519839182
[7] Föppl, A.: Der drillungswiderstand von walzeisenträgern. Z. Ver. Dtsch. Ing. 60, 694-695 (1917). (in German)
[8] Gjelsvik, A., The Theory of Thin Walled Bars (1981), New York: Wiley, New York · Zbl 0558.73037
[9] Goodier, J.N.: Torsional and flexural buckling of bars of thin-walled open section under compressive and bending loads. J. Appl. Mech. Trans. ASME 9, A103-A107 (1942) · Zbl 0063.01694
[10] Gruttmann, F.; Sauer, R.; Wagner, W., Theory and numerics of three-dimensional beams with elastoplastic material behavior, Int. J. Num. Methods Eng., 48, 1675-1702 (2000) · Zbl 0989.74069 · doi:10.1002/1097-0207(20000830)48:12<1675::AID-NME957>3.0.CO;2-6
[11] Kappus, R.: Twisting failure of centrally loaded open-section columns in the elastic range. Technical Memorandum no. 851, National Advisory Committee for Aeronautics, Washington, D.C. (1938)
[12] Methods of analysis for torsion with variable twist: Kármán, Th.von., Christensen, N.B. J. Aero. Sci. 11, 110-124 (1944)
[13] Oden, JT; Ripperger, AE, Mechanics of Elastic Structures (1981), Washington: Hemisphere, Washington
[14] Pilkey, WD, Analysis and Design of Elastic Beams (2002), New York: Wiley, New York · doi:10.1002/9780470172667
[15] Popov, EP, Kelvin’s solution of torsion problem, ASCE J. Eng. Mech., 96, 1005-1012 (1970)
[16] Prandtl, L.: Zur torsion von prismatischen stäben. Phys. Zeitschr. 4, 758-770 (1903). (in German) · JFM 34.0852.03
[17] Reissner, E., On non-uniform torsion of cylindrical rods, J. Math. Phys., 31, 214-221 (1952) · Zbl 0047.42604 · doi:10.1002/sapm1952311214
[18] Reissner, E., On a simple variational analysis of small finite deformations of prismatical beams, J. Appl. Math. Phys. (ZAMP), 34, 642-648 (1983) · Zbl 0552.73007 · doi:10.1007/BF00948807
[19] Saint-Venant, B.: Mémoire sur la Torsion des Prismes. Mém. Savants Étrangers, Paris (1855) (in French) · Zbl 0102.24602
[20] Salmon, CG; Johnson, JE; Malhas, FA, Steel Structures, Design and Behavior (2009), Upper Saddle River: Prentice Hall, Upper Saddle River
[21] Seaburg, P.A., Carter, C.J.: Torsional Analysis of Structural Steel Members. Steel Design Guide Series 9, American Institute of Steel Construction (1997)
[22] Simo, JC; Armero, F.; Taylor, RL, Improved tri-linear versions of assumed enhanced strain elements for 3d finite deformation problems, Comp. Meth. Appl. Mech. Eng., 110, 359-386 (1993) · Zbl 0846.73068 · doi:10.1016/0045-7825(93)90215-J
[23] Simo, JC; Vu-Quoc, L., A geometricall-exact rod model incorporating shear and torsion-warping deformation, Int. J. Solids Struct., 27, 371-393 (1991) · Zbl 0731.73029 · doi:10.1016/0020-7683(91)90089-X
[24] Sokolnikoff, IS, Mathematical Theory of Elasticity (1956), New York: McGraw-Hill, New York · Zbl 0070.41104
[25] Timoshenko, S.P.: Torsional vibrations of shafts. Proc. St. Petersb. Polytechn. Inst. 3, 397-406 (1905). (in Russian)
[26] Timoshenko, S.P.: Lateral buckling of i-beams under the influence of forces acting in the plane of largest rigidity. Proc. St. Petersburg Polytechnical Institute 4-5, 151-219, 3-34, 262-292 (1906). (in Russian)
[27] Timoshenko, S.P.: Einige stabilitätsprobleme der elastizitätstheorie. Zeits. Ang. Math. Phys. (ZAMP) 58, 337-385 (1910). (in German) · JFM 41.0901.01
[28] Timoshenko, SP; Gere, JM, Theory of Elastic Stability (1961), New York: McGraw-Hill, New York
[29] Timoshenko, SP; Goodier, JN, Theory of Elasticity (1951), New York: McGraw-Hill, New York · Zbl 0045.26402
[30] Trefftz, E.: über den schubmittelpunkt in einem durch eine einzellast gebogenen balken. Z. Angew. Math. Mech. 55, 220-225 (1935). (in German) · JFM 61.0892.01
[31] Vlasov, V.Z.: Thin-Walled Elastic Beams. Israel Program for Scientific Translations Ltd., Jerusalem (1961). (first Russian edition 1940)
[32] Wagner, H.: Torsion and buckling of open sections. Technical Memorandum no. 807, National Advisory Committee for Aeronautics, Washington (1936)
[33] Weinstein, A., The center of shear and the center of twist, Q. Appl. Math., 5, 97-99 (1947) · Zbl 0029.17101 · doi:10.1090/qam/20437
[34] Zbirohowski-Koscia, K., Thin Walled Beams (1967), London: Crosby Lockwood and Son Ltd., London
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.