×

Atomic electronegativity based on hardness and floating spherical Gaussian orbital approach. (English) Zbl 1487.81156

Summary: Electronegativity \((\chi)\) is an important property of any chemical species as it helps to predict the pattern of physico-chemical interactions. In the present work, we have suitably studied this property and suggested a new model to compute atomic electronegativity based on atomic hardness using the Floating spherical Gaussian orbital model. Using this method, we have developed a new scale of electronegativity which provides atomic values for 54 elements. Our electronegativity data not only follows the periodic trend but is found to be well related to some electronegativity scales also. It also correlates well with other periodic properties. Our scale effectively establishes the Electronegativity equalization principle. Invoking our computed electronegativity values, we have been able to calculate internuclear bond distances of some molecular species and our prediction is quite satisfactory in terms of its correlation with experimental counterparts.

MSC:

81V45 Atomic physics
70M20 Orbital mechanics
35K57 Reaction-diffusion equations
80A30 Chemical kinetics in thermodynamics and heat transfer
81V55 Molecular physics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Parr, RG; Donnelly, RA; Levy, M.; Palke, WE, Electronegativity: the density functional viewpoint, J. Chem. Phys., 68, 8, 3801-3807 (1978)
[2] Ruthenberg, K.; González, JCM, Electronegativity and its multiple faces: persistence and measurement, Found. Chem., 19, 1, 61-75 (2017)
[3] Upadhyay, DP, Electronegativity and hardness: linear isoelectronic trends, Curr. Phys. Chem., 7, 2, 118-125 (2017)
[4] Akhkubekov, AA; Akhkubekova, SN; Bagov, AM; Bagova, MF; Tamaev, TK, Relation of effective charges to atom electronegativity, Bull. Russ. Acad. Sci. Phys., 81, 5, 637-640 (2017)
[5] Politzer, P.; Murray, JS, Electronegativity—a perspective, J. Mol. Model., 24, 8, 214-220 (2018)
[6] Qteish, A., Electronegativity scales and electronegativity-bond ionicity relations: a comparative study, J. Phys. Chem. Solids, 124, 186-191 (2019)
[7] Miranda-Quintana, RA; González, MM; Ayers, PW, Electronegativity and redox reactions, Phys. Chem. Chem. Phys., 18, 32, 22235-22243 (2016)
[8] Rahm, M.; Zeng, T.; Hoffmann, R., Electronegativity seen as the ground-state average valence electron binding energy, J. Am. Chem. Soc., 141, 1, 342-351 (2018)
[9] Accorinti, HL, Incompatible models in chemistry: the case of electronegativity, Found. Chem., 21, 1, 71-81 (2019)
[10] Sánchez-Márquez, J.; García, V.; Zorrilla, D.; Fernández, M., On electronegativity, hardness, and reactivity descriptors: a new property-oriented basis set, J. Phys. Chem. A, 124, 23, 4700-4711 (2020)
[11] Tandon, H.; Chakraborty, T.; Suhag, V., A scale of atomic electronegativity in terms of atomic nucleophilicity index, Found. Chem., 22, 2, 335-346 (2020)
[12] Mullay, J.; Sen, KD; Jørgensen, CK, Estimation of atomic and group electronegativities, Electronegativity. Structure and bonding, 1-25 (1987), Berlin: Springer, Berlin
[13] Pearson, RG, Electronegativity scales, Acc. Chem. Res., 23, 1, 1-2 (1990)
[14] Sproul, G., Electronegativity and bond type. 2. Evaluation of electronegativity scales, J. Phys. Chem., 98, 27, 6699-6703 (1994)
[15] Rahm, M.; Cammi, R.; Ashcroft, NW; Hoffmann, R., Squeezing all elements in the periodic table: electron configuration and electronegativity of the atoms under compression, J. Am. Chem. Soc., 141, 26, 10253-10271 (2019)
[16] Sproul, GD, Evaluation of electronegativity scales, ACS Omega, 5, 20, 11585-11594 (2020)
[17] Campero, A.; Díaz Ponce, JA, Averaged scale in electronegativity joined to physicochemical perturbations. Consequences of periodicity, ACS Omega, 5, 40, 25520-25542 (2020)
[18] Ghosh, DC; Chakraborty, T., Gordy’s electrostatic scale of electronegativity revisited, J. Mol. Struct. (Thoechem), 906, 1-3, 87-93 (2009)
[19] Ghosh, DC; Chakraborty, T.; Mandal, B., The electronegativity scale of allred and rochow: revisited, Theoret. Chem. Acc., 124, 3, 295-301 (2009)
[20] Tandon, H.; Labarca, M.; Chakraborty, T., A scale of atomic electronegativity based on floating spherical gaussian orbital approach, ChemistrySelect, 6, 22, 5622-5627 (2021)
[21] Pauling, L., The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms, J. Am. Chem. Soc., 54, 3570-3582 (1932) · Zbl 0006.13704
[22] Mulliken, RS, A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities, J. Chem. Phys., 2, 11, 782-793 (1934)
[23] Gordy, W., A new method of determining electronegativity from other atomic properties, Phys. Rev., 69, 11-12, 604 (1946)
[24] Allred, AL; Rochow, EG, A scale of electronegativity based on electrostatic force, J. Inorg. Nucl. Chem., 5, 4, 264-268 (1958)
[25] Iczkowski, RP; Margrave, JL, Electronegativity, J. Am. Chem. Soc., 83, 17, 3547-3551 (1961)
[26] Simons, G.; Zandler, ME; Talaty, ER, Nonempirical electronegativity scale, J. Am. Chem. Soc., 98, 24, 7869-7870 (1976)
[27] Bratsch, SG, Revised Mulliken electronegativities: I. Calculation and conversion to Pauling units, J. Chem. Educ., 65, 1, 34-41 (1988)
[28] Parr, RG; Pearson, RG, Absolute hardness: companion parameter to absolute electronegativity, J. Am. Chem. Soc., 105, 26, 7512-7516 (1983)
[29] Pearson, RG, Absolute electronegativity and hardness: application to inorganic chemistry, Inorg. Chem., 27, 4, 734-740 (1988)
[30] Pearson, RG, Absolute electronegativity and hardness: applications to organic chemistry, J. Org. Chem., 54, 6, 1423-1430 (1989)
[31] Trofimov, MI; Smolenskii, EA, Application of the electronegativity indices of organic molecules to tasks of chemical informatics, Russ. Chem. Bull. Int. Edn., 54, 9, 2235-2246 (2005)
[32] Arroyo-De Dompablo, ME; Armand, M.; Tarascon, JM; Amador, U., On-demand design of polyoxianionic cathode materials based on electronegativity correlations: an exploration of the Li_2MSiO_4 system (M= Fe, Mn Co, Ni), Electrochem. Commun., 8, 8, 1292-1298 (2006)
[33] Frost, AA, Floating spherical Gaussian orbital model of molecular structure. I. Computational procedure. LiH as an example, J. Chem. Phys., 47, 10, 3707-3713 (1967)
[34] Frost, AA, Floating spherical Gaussian orbital model of molecular structure. II. One-and two-electron-pair systems, J. Chem. Phys., 47, 10, 3714-3716 (1967)
[35] Frost, AA; Schaefer, HF, The floating spherical gaussian method, Methods of electronic structure theory, 29-49 (1977), New York: Plenum Press, New York
[36] Islam, N.; Ghosh, DC, Spectroscopic evaluation of the global hardness of the atoms, Mol. Phys., 109, 12, 1533-1544 (2011)
[37] Mulliken, RS, Molecular compounds and their spectra. II., J. Am. Chem. Soc., 74, 3, 811-824 (1952)
[38] Pearson, RG, Hard and soft acids and bases, J. Am. Chem. Soc., 85, 22, 3533-3539 (1963)
[39] Pearson, RG, Acids and bases, Science, 151, 3707, 172-177 (1966)
[40] Klopman, G., A semiempirical treatment of molecular structures. I. Electronegativity and atomic terms, J. Am. Chem. Soc., 86, 8, 1463-1469 (1964)
[41] Klopman, G., Chemical reactivity and the concept of charge-and frontier- controlled reactions, J. Am. Chem. Soc., 90, 2, 223-234 (1968)
[42] Parr, RG; Chattaraj, PK, Principle of maximum hardness, J. Am. Chem. Soc., 113, 5, 1854-1855 (1991)
[43] Ayers, PW, The physical basis of the hard/soft acid/base principle, Faraday Discuss., 135, 161-190 (2007)
[44] Ayers, PW; Parr, RG, Beyond electronegativity and local hardness: higher-order equalization criteria for determination of a ground-state electron density, J. Chem. Phys., 129, 5, 054111 (2008)
[45] Datta, D., Geometric mean principle for hardness equalization: a corollary of Sanderson’s geometric mean principle of electronegativity equalization, J. Phys. Chem., 90, 17, 4216-4217 (1986)
[46] Komorowski, L., Electronegativity and hardness in the chemical approximation, Chem. Phys., 114, 1, 55-71 (1987)
[47] Reed, JL, Electronegativity: chemical Hardness I, J. Phys. Chem. A, 101, 40, 7396-7400 (1997)
[48] Putz, MV, Absolute and chemical electronegativity and hardness (2008), New York: Nova Science Publishers, Inc, New York
[49] Islam, N.; Ghosh, DC, The electronegativity and the global hardness are periodic properties of atoms, J. Quantum Inf. Sci., 1, 3, 135-141 (2011)
[50] Ghosh, DC; Islam, N., Whether electronegativity and hardness are manifest two different descriptors of the one and the same fundamental property of atoms−A quest, Int. J. Quantum Chem., 111, 1, 40-51 (2011)
[51] Blustin, PH; Linnett, JW, Applications of a simple molecular wavefunction Part 1.—Floating spherical Gaussian orbital calculations for propylene and propane, J. Chem. Soc. Faraday Trans. Mol. Chem. Phys., 70, 274-289 (1974)
[52] Hinze, J.; Jaffé, HH, Electronegativity. I. Orbital electronegativity of neutral atoms, J. Am. Chem. Soc., 84, 4, 540-546 (1962)
[53] Putz, MV, Systematic formulations for electronegativity and hardness and their atomic scales within density functional softness theory, Int. J. Quantum Chem., 106, 2, 361-389 (2006)
[54] Sanderson, RT, An interpretation of bond lengths and a classification of bonds, Science, 114, 2973, 670-672 (1951)
[55] Sanderson, RT, Partial charges on atoms in organic compounds, Science, 121, 3137, 207-208 (1955)
[56] Parr, RG; Bartolotti, LJ, On the geometric mean principle for electronegativity equalization, J. Am. Chem. Soc., 104, 14, 3801-3803 (1982)
[57] Nalewajski, RF, A study of electronegativity equalization, J. Phys. Chem., 89, 13, 2831-2837 (1985)
[58] Rayb, NK; Samuelsc, L.; Parr, RG, Studies of electronegativity equalization, J. Chem. Phys., 70, 8, 3680-3684 (1979)
[59] Lovas, FJ; Tiemann, E., Microwave spectral tables. I. Diatomic molecules, J. Phys. Chem. Ref. Data, 3, 3, 609-770 (1974)
[60] Tandon, H.; Ranjan, P.; Chakraborty, T.; Suhag, V., Computation of absolute radii of 103 elements of the periodic table in terms of nucleophilicity index, J. Math. Chem., 58, 5, 1025-1040 (2020) · Zbl 1437.81207
[61] Sanderson, RT, Electronegativities in inorganic chemistry, J. Chem. Educ., 29, 11, 539-544 (1952)
[62] Zaleski-Ejgierd, P.; Lata, PM, Krypton oxides under pressure, Sci. Rep., 6, 1, 18938 (2016)
[63] Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Rӓsӓnen, M., A stable argon compound, Nature, 406, 6798, 874-876 (2000)
[64] Dixon, DA; Wang, TH; Grant, DJ; Peterson, KA; Christe, KO; Schrobilgen, GJ, Heats of formation of krypton fluorides and stability predictions for KrF_4 and KrF_6 from high level electronic structure calculations, Inorg. Chem., 46, 23, 10016-10021 (2007)
[65] Mann, JB; Meek, TL; Knight, ET; Capitani, JF; Allen, LC, Configuration energies of the d-block elements, J. Am. Chem. Soc., 122, 21, 5132-5137 (2000)
[66] Kohler, J.; Whangbo, MH, Late transition metal anions acting as p-metal elements, Solid State Sci., 10, 4, 444-449 (2008)
[67] Lee, C.; Whangbo, MH; Kohler, J., Analysis of electronic structures and chemical bonding of metal-rich compounds. 2. Presence of dimer (T−T)4− and isolated T2− anions in the polar intermetallic Cr5B3-type compounds AE5T3 (AE = Ca, Sr; T = Au, Ag, Hg, Cd, Zn), Z. Anorg. Allg. Chem., 636, 1, 36-40 (2010)
[68] Tandon, H.; Chakraborty, T.; Suhag, V., A new model of atomic nucleophilicity index and its application in the field of QSAR, Int. J. Quant. Struct. Prop. Relat., 4, 3, 99-117 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.