×

Long-time behavior of a size-structured population model with diffusion and delayed birth process. (English) Zbl 1490.92057

Summary: This work focuses on the long time behavior for a size-dependent population system with diffusion and Riker type birth function. Some dynamical properties of the considered system is investigated by using \(C_0\)-semigroup theory and spectral analysis arguments. Some sufficient conditions are obtained respectively for asymptotical stability, asynchronous exponential growth at the null equilibrium as well as Hopf bifurcation occurring at the positive steady state of the system. In the end several examples and their simulations are also provided to illustrate the achieved results.

MSC:

92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Bátkai; S. Piazzera, Semigroups and linear partial differential equations with delay, J. Math. Anal. Appl., 264, 1-20 (2001) · Zbl 1003.34044 · doi:10.1006/jmaa.2001.6705
[2] P. Bi and X. Fu, Hopf bifurcation in an age-dependent population model with delayed birth process, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1250146, 16 pp. · Zbl 1270.35383
[3] M. Boulanouar, The asymptotic behavior of a structured cell population, J. Evol. Equ., 11, 531-552 (2011) · Zbl 1252.35059 · doi:10.1007/s00028-011-0100-8
[4] J. Chu; A. Ducrot; P. Magal; S. Ruan, Hopf bifurcation in a size-structured population dynamic model with random growth, J. Differ. Equ., 247, 956-1000 (2009) · Zbl 1172.35322 · doi:10.1016/j.jde.2009.04.003
[5] K. Cooke; P. van den Driessche; X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 39, 332-352 (1999) · Zbl 0945.92016 · doi:10.1007/s002850050194
[6] O. Diekmann; Ph. Getto; M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal., 39, 1023-1069 (2007) · Zbl 1149.39021 · doi:10.1137/060659211
[7] O. Diekmann and M. Gyllenberg, Abstract delay equations inspired by population dynamics, in Functional Analysis and Evolution Equations, Birkhäuser, Basel, 2008,187-200. · Zbl 1167.47058
[8] A. Ducrot; P. Magal; and O. Seydi, Nonlinear boundary conditions derived by singular pertubation in age structured population dynamics model, J. Appl. Anal. Comput., 1, 373-395 (2011) · Zbl 1304.92109 · doi:10.11948/2011026
[9] K.-J. Engel, Operator matrices and systems of evolution equations, RIMS Kokyuroku, 966, 61-80 (1996) · Zbl 0936.34044
[10] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. · Zbl 0952.47036
[11] X. Fu; Z. Liu; P. Magal, Hopf bifurcation in an age-structured population model with two delays, Commun. Pure Appl. Anal., 14, 657-676 (2015) · Zbl 1314.35195 · doi:10.3934/cpaa.2015.14.657
[12] X. Fu; Q. Wu, Asymptotic behaviors of a size-structured population model, Acta Math. Appl. Sin. Engl. Ser., 33, 1025-1042 (2017) · Zbl 1378.35312 · doi:10.1007/s10255-017-0717-7
[13] G. Greiner, A typical Perron-Frobenius theorem with applications to an age-dependent population equation, Infinite-Dimensional Systems, Lect. Notes in Math., 1076, 86-100 (1984) · Zbl 0568.47031 · doi:10.1007/BFb0072769
[14] G. Greiner, Perturbing the boundary conditions of a generator, Houston J. Math., 13, 213-229 (1987) · Zbl 0639.47034
[15] M. Gyllenberg; G. F. Webb, Asynchronous exponential growth of semigroups of nonlinear operators, J. Math. Anal. Appl., 167, 443-467 (1992) · Zbl 0818.47064 · doi:10.1016/0022-247X(92)90218-3
[16] P. Getto; M. Gyllenberg; Y. Nakata; F. Scarabel, Stability analysis of a state dependent delay differential equation for cell maturation: Analytical and numerical methods, J. Math. Biol., 79, 281-328 (2019) · Zbl 1470.92105 · doi:10.1007/s00285-019-01357-0
[17] Z. He; D. Ni; S. Wang, Existence and stability of steady states for hierarchical age-structured population models, Electron. J. Differ. Equ., 124, 1-14 (2019) · Zbl 1427.92076
[18] Z. Liu; P. Magal; S. Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Z. Angew. Math. Phys., 62, 191-222 (2011) · Zbl 1242.34112 · doi:10.1007/s00033-010-0088-x
[19] P. Magal and S. Ruan, Center manifold theorem for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models, Mem. Amer. Math. Soc., 202 (2009). · Zbl 1191.35045
[20] P. Magal; S. Ruan, Sustained oscillations in an evolutionary epidemiological model of influenza A drift, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466, 965-992 (2010) · Zbl 1195.35290 · doi:10.1098/rspa.2009.0435
[21] R. Nagel, (ed.), One-Parameter Semigroups of Positive Operators, Lect. Notes in Math., Vol. 1184, Springer-Verlag, 1986. · Zbl 0585.47030
[22] R. Nagel, The spectrum of unbounded operator matrices with nondiagonal domain, J. Funct. Anal., 89, 291-302 (1990) · Zbl 0704.47001 · doi:10.1016/0022-1236(90)90096-4
[23] R. Nagel; G. Nickel; S. Romanelli, Identification of extrapolation spaces for unbounded operators, Quaestiones Math., 19, 83-100 (1996) · Zbl 0863.47024 · doi:10.1080/16073606.1996.9631827
[24] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[25] S. Pizzera; L. Tonetto, Asynchronous exponential growth for an age dependent population equation with delayed birth process, J. Evol. Equ., 5, 61-77 (2005) · Zbl 1102.34041 · doi:10.1007/s00028-004-0159-6
[26] A. Rhandi; R. Schnaubelt, Asymptotic behavior of a non-autonomous population equation with diffusion in \(L^1\), Discrete Contin. Dynam. Systems, 5, 663-683 (1999) · Zbl 1002.92016 · doi:10.3934/dcds.1999.5.663
[27] W. E. Ricker, Computation and interpretation of biological studies of fish populations, Bull. Fish. Res. Board Can., 191 (1975).
[28] W. E. Ricker, Stock and recruitment, J. Fish. Res. Board Can., 11, 559-623 (1954) · doi:10.1139/f54-039
[29] Y. Su; S. Ruan; J. Wei, Periodicity and synchronization in blood-stage malaria infection, J. Math. Biol., 63, 557-574 (2011) · Zbl 1311.92182 · doi:10.1007/s00285-010-0381-5
[30] H. Tang; Z. Liu, Hopf bifurcation for a predator-prey model with age structure, Appl. Math. Model., 40, 726-737 (2016) · Zbl 1446.92025 · doi:10.1016/j.apm.2015.09.015
[31] J. Voigt, A perturbation theorem for the essential spectral radius of strongly continuous semigroups, Monatsh. Math., 90, 153-161 (1980) · Zbl 0433.47022 · doi:10.1007/BF01303264
[32] G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcell Dekker, New York, 1985. · Zbl 0555.92014
[33] X. Wang, H. Wang and M. Y. Li, \(R_0\) and sensitivity analysis of a predator-prey model with seasonality and maturation delay, Math. Biosci., 315 (2019), 108225, 11 pp. · Zbl 1425.92165
[34] D. Yan; X. Fu, Asymptotic analysis of a spatially and size-structured population model with delayed birth process, Commun. Pure Appl. Anal., 15, 637-655 (2016) · Zbl 1358.35212 · doi:10.3934/cpaa.2016.15.637
[35] D. Yan and X. Fu, Long-time behavior of spatially and size-structured population dynamics with delayed birth process, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750032, 23 pp. · Zbl 1360.35308
[36] C. Zheng, F. Zhang and J. Li, Stability analysis of a population model with maturation delay and Ricker birth function, Abstr. Appl. Anal., (2014), Art. ID 136707, 1-8. · Zbl 1470.34138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.