×

Superconvergence of finite element approximations of the two-dimensional cubic nonlinear Schrödinger equation. (English) Zbl 1499.65686

Summary: The superconvergence of a two-dimensional time-independent nonlinear Schrödinger equation are analyzed with the rectangular Lagrange type finite element of order \(k\). Firstly, the error estimate and superclose property are given in \(H^1\)-norm with order \(\mathcal{O}(h^{k+1})\) between the finite element solution \(u_h\) and the interpolation function \(u_I\) by use of the elliptic projection operator. Then, the global superconvergence is obtained by the interpolation post-processing technique. In addition, some numerical examples with the order \(k = 1\) and \(k = 2\) are provided to demonstrate the theoretical analysis.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. D. AKRIVIS, Finite difference discretization of the cubic Schrödinger equation, IMA J. Numer. Anal., 13(1) (1993), pp. 115-124. · Zbl 0762.65070
[2] H. HAN, J. JIN AND X. WU, A finite-difference method for the one-dimensional time-dependent Schrödinger equation on unbounded domain, Comput. Math. Appl., 50(8) (2005), pp. 1345-1362. · Zbl 1092.65071
[3] T. WANG AND B. GUO, Unconditional convergence of two conservative compact difference schemes for non-linear Schrödinger equation in one dimension, Sci. Sin. Math., 41(3) (2011), pp. 207-233. · Zbl 1488.65296
[4] G. D. AKRIVIS, V. A. DOUGALIS AND O. A. KARAKASHIAN, On fully discrete Galerkin meth-ods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math., 59(1) (1991), pp. 31-53. · Zbl 0739.65096
[5] G. D. AKRIVIS, V.A. DOUGALIS, O. A. KARAKASHIAN AND W. R. MCKINNEY, Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation, SIAM J. Sci. Comput., 25 (2003), pp. 186-212. · Zbl 1039.35115
[6] D. C. ANTONOPOULOU, G. D. KARALI, M. PLEXOUSAKIS AND G. E. ZOURARIS, Crank-Nicolson finite element discretizations for a two-dimensional linear Schrödinger-type equation posed in a noncylindrical domain, Math. Comput., 84(294) (2015), pp. 1571-1598. · Zbl 1309.65105
[7] X. GONG, L. SHEN, D. ZHANG AND A. ZHOU, Finite element approximations for Schrödinger equations with applications to electronic structure computations, J. Comput. Math., 26(3) (2008), pp. 310-323. · Zbl 1174.65047
[8] J. JIN AND X. WU, Convergence of a finite element scheme for the two-dimensional time-dependent Schrödinger equation in a long strip, J. Comput. Appl. Math., 234(3) (2010), pp. 777-793. · Zbl 1191.65118
[9] I. KYZA, A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equa-tions, ESAIM Math. Model. Numer. Anal., 45(4) (2011), pp. 761-778. · Zbl 1269.65088
[10] H. Y. LEE, Fully discrete methods for the nonlinear Schrödinger equation, Comput. Math. Appl., 28(6) (1994), pp. 9-24. · Zbl 0808.65133
[11] Q. TANG, C. M. CHEN AND L. H. LIU, Space-time finite element method for Schrödinger equation and its conservation, Appl. Math. Mech. Engl. Ed., 27(3) (2006), pp. 335-340. · Zbl 1149.65313
[12] L. LIAO, G. JI, Z. TANG AND H. ZHANG, Spike-layer simulation for steady-state coupled Schrödinger equation, East Asia. J. Appl. Math., 7(3) (2017), pp. 566-582. · Zbl 1384.65084
[13] J. WANG, A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation, J. Sci. Comput., 60(2) (2014), pp. 390-407. · Zbl 1306.65257
[14] J. WANG AND Y. HUANG, Fully discrete Galerkin finite element method for the cubic nonlinear Schrödinger equation, Numer. Math. Theor. Meth. Appl., 71(10) (2017), pp. 670-687.
[15] L. GUO AND Y. XU, Energy conserving local discontinuous Galerkin methods for the nonlinear Schrödinger equation with Wave Operator, J. Sci. Comput., 65(2) (2015), pp. 622-647. · Zbl 1334.65154
[16] Q. TAO AND Y. XIA, Error estimates and post-processing of local discontinuous Galerkin method for Schrödinger equations, J. Comput. Appl. Math., 356 (2019), pp. 198-218. · Zbl 1422.65270
[17] W. WANG AND C. W. SHU, The WKB local discontinuous Galerkin method for the simulation of Schrödinger equation in a resonant tunneling diode, J. Sci. Comput., 40 (2009), pp. 360-374. · Zbl 1203.65119
[18] Y. XU AND C. W. SHU, Local discontinuous Galerkin methods for nonlinear Schrödinger equations, J. Comput. Phys., 205(1) (2005), pp. 72-97. · Zbl 1072.65130
[19] C. S. CHIEN, H. T. HUANG, B. W. JENG AND Z. C. LI, Two-grid discretization schemes for nonlinear Schrödinger equations, J. Computa. Appl. Math., 214 (2008), pp. 549-571. · Zbl 1135.65361
[20] J. JIN, N. WEI AND H. ZHANG, A two-grid finite-element method for the nonlinear Schrödinger equation, J. Comput. Math., 33(2) (2015), pp. 146-157. · Zbl 1340.65221
[21] Z. TIAN, Y. CHEN, Y. HUANG AND J. WANG, Two-grid method for the two-dimensional time-dependent Schrödinger equation by the finite element method, Comput. Math. Appl., 77(12) (2019), pp. 3043-3053. · Zbl 1442.65277
[22] L. WU, Two-grid mixed finite-element methods for nonlinear Schrödinger equations, Numer. Meth-ods Partial Differential Equations, 28(1) (2012), pp. 63-73. · Zbl 1252.65171
[23] J. WANG, J. JIN AND Z. TIAN, Two-grid finite element method with Crank-Nicolson fully discrete scheme for the time-dependent Schrödinger equation, Numer. Math. Theor. Meth. Appl., 13(2) (2020), pp. 334-352. · Zbl 1463.65281
[24] W. BAO, S. JIN AND P. A. MARKOWICH, Numerical study of time-splitting spectral discretiza-tions of nonlinear Schrödinger equations in the semiclassical regimes, SIAM J. Sci. Comput., 25(1) (2003), pp. 27-64. · Zbl 1038.65099
[25] M. DEHGHAN AND A. TALEEI, Numerical solution of nonlinear Schrödinger equation by us-ing time-space pseudo-spectral method, Numer. Methods Partial Differential Equations, 26(4) (2010), pp. 979-990. · Zbl 1195.65137
[26] S. JIN AND X. YANG, Computation of the semiclassical limit of the Schrödinger equation with phase shift by a level set method, J. Sci. Comput., 35(2) (2008), pp. 144-169. · Zbl 1203.65137
[27] I. BABUŠKA, U. BANERJEE AND J. E. OSBORN, Superconvergence in the generalized finite ele-ment method, Numer. Math., 107(3) (2007), pp. 353-395. · Zbl 1129.65075
[28] C. CHEN AND Y. HUANG, High Accuracy Theory of Finite Element Methods (in Chinese), Hunan Science Press, Changsha, 1995.
[29] C. CHEN AND S. HU, The highest order superconvergence for bi-k degree rectangular elements at nodes: A proof of 2k-conjecture, Math. Comput., 82(283) (2013), pp. 1337-1355. · Zbl 1276.65067
[30] Y. CHEN, L. DAI AND Z. LU, Superconvergence of rectangular mixed finite element methods for constrained optimal control problem, Adv. Appl. Math. Mech., 2(1) (2010), pp. 56-75. · Zbl 1262.49007
[31] Y. CHEN, Y. HUANG, W. LIU AND N. YAN, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 42(3) (2010), pp. 382-403. · Zbl 1203.49042
[32] Y. HUANG, J. LI AND Q. LIN, Superconvergence analysis for time-dependent Maxwell’s equations in metamaterials, Numer. Methods Partial Differential Equations, 28(6) (2012), pp. 1794-1816. · Zbl 1252.78030
[33] Y. HUANG, J. LI, C. WU AND W. YANG, Superconvergence analysis for linear tetrahedral edge elements, J. Sci. Comput., 62(1) (2015), pp. 122-145. · Zbl 1310.78015
[34] Y. HUANG, W. YANG AND N. YI, Superconvergence analysis for the explicit polynomial recovery method, J. Comput. Appl. Math., 265 (2014), pp. 187-198. · Zbl 1293.65155
[35] J. LI AND B. NAN, Simulating backward wave propagation in metamaterial with radial basis func-tions, Results Appl. Math., 2 (2019), 100009. · Zbl 1451.78043
[36] J. LI AND Y. HUANG, Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials, Springer Series in Computational Mathematics, Vol. 43, Springer, 2013. · Zbl 1304.78002
[37] J. LI AND S. SUN, The superconvergence phenomenon and proof of the MAC scheme for the Stokes equations on non-uniform rectangular meshes, J. Sci. Comput., 65(1) (2015), pp. 341-362. · Zbl 1328.65210
[38] R. LIN AND Z. ZHANG, Natural superconvergence points in three-dimensional finite elements, SIAM J. Numer. Anal., 46(3) 2008, pp. 1281-1297. · Zbl 1168.65059
[39] L. B. WAHLBIN, Superconvergence in Galerkin Finite Element Methods, Springer, Berlin, 1995. · Zbl 0826.65092
[40] J. WANG AND X. YE, Superconvergence of finite element approximations for the Stokes problem by projection methods, SIAM J. Numer. Anal., 39(3) (2001), pp. 1001-1013. · Zbl 1002.65118
[41] C. YAO, D. SHI AND M. HOU, Superconvergence analysis for the Maxwell’s equations in Debye medium with a thermal effect, Adv. Appl. Math. Mech., 12(1) (2020), pp. 141-163. · Zbl 1488.65481
[42] N. YAN, Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods, Science Press, Beijing, 2008.
[43] Q. LIN AND X. LIU, Global superconvergence estimates of finite element method for Schrödinger equation, J. Comput. Math., 16(6) (1998), pp. 521-526. · Zbl 0922.65069
[44] D. SHI, P. WANG AND Y. ZHAO, Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation, Appl. Math. Lett., 38 (2014), pp. 129-134. · Zbl 1314.65127
[45] D. SHI AND J. WANG, Unconditional superconvergence analysis of a Crank-Nicolson Galerkin FEM for nonlinear Schrödinger equation, J. Sci. Comput., 72(2) (2017), pp. 1093-1118. · Zbl 1407.65162
[46] D. SHI, X. LIAO AND L. WANG, Superconvergence analysis of conforming finite element method for nonlinear Schr”odinger equation, Appl. Math. Comput., 289 (2016), pp. 298-310. · Zbl 1410.65378
[47] Z. TIAN, Y. CHEN AND J. WANG, Superconvergence analysis of bilinear finite element for the nonlinear Schrödinger equation on the rectangular mesh, Adv. Appl. Math. Mech., 10(2) (2018), pp. 448-464.
[48] J. WANG AND Y. CHEN, Superconvergence analysis of bi-k degree rectangular elements for two-dimensional time-dependent Schrödinger equations, Appl. Math. Mech. Engl. Ed., 39(9) (2018), pp. 1353-1372. · Zbl 1398.65227
[49] J. WANG, Y. HUANG, Z. TIAN AND J. ZHOU, Superconvergence analysis of finite element method for the time-dependent Schrödinger equation, Comput. Math. Appl., 71(10) (2016), pp. 1960-1972. · Zbl 1443.65225
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.