×

Observer-based synchronization of memristive neural networks under DoS attacks and actuator saturation and its application to image encryption. (English) Zbl 1510.94033

Summary: In this article, the synchronization issue of memristive neural networks (MNNs) under denial-of-service (DoS) attacks and actuator saturation is investigated via an observer-based controller. Due to actual physical constraint, the effect of actuator saturation is taken into account in the controller design. Unlike the existing works where the communication environment is secure, DoS attacks are explored in the communication channel connecting master and slave MNNs. Based on the above considerations, an observer-based control approach is developed to estimate the MNNs states and guarantee the MNNs synchronization in the presences of DoS attacks and actuator saturation. By using the Lyapunov method and stochastic analysis technique, the sufficient synchronization conditions are derived via a set of linear matrix inequalities (LMIs). Meanwhile, the attraction domain of error system is estimated to satisfy the demand of actuator saturation. Then, numerical simulation is used to manifest the validity of our theoretical results. Finally, the proposed synchronization theory is applied to image encryption. The experimental results demonstrate that the presented image encryption scheme has a reliable performance.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
34D06 Synchronization of solutions to ordinary differential equations
34K09 Functional-differential inclusions
93B53 Observers
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wang, W.; Yu, X.; Luo, X.; Kurths, J., Synchronization control of memristive multidirectional associative memory neural networks and applications in network security communication, IEEE Access, 6, 36002-36018 (2018)
[2] Guo, Y.; Luo, Y.; Wang, W.; Luo, X.; Ge, C.; Kurths, J.; Yuan, M.; Gao, Y., Fixed-time synchronization of complex-valued memristive BAM neural network and applications in image encryption and decryption, Int. J. Control Autom. Syst., 18, 2, 462-476 (2020)
[3] Pal Chowdhury, A.; Kulkarni, P.; Nazm Bojnordi, M., MB-CNN: memristive binary convolutional neural networks for embedded mobile devices, J. Low Power Electron. Appl., 8, 4, 38 (2018)
[4] Lin, H.; Wang, C.; Hong, Q.; Sun, Y., A multi-stable memristor and its application in a neural network, IEEE Trans. Circuits Syst. II, 67, 12, 3472-3476 (2020)
[5] Xie, W.; Wang, C.; Lin, H., A fractional-order multistable locally active memristor and its chaotic system with transient transition, state jump, Nonlinear Dyn., 104, 4523-4541 (2021)
[6] Lin, H.; Wang, C.; Deng, Q.; Xu, C.; Deng, Z.; Zhou, C., Review on chaotic dynamics of memristive neuron and neural network, Nonlinear Dyn., 106, 959-973 (2021)
[7] Pershin, Y. V.; Di Ventra, M., Experimental demonstration of associative memory with memristive neural networks, Neural Netw., 23, 7, 881-886 (2010)
[8] Hong, Q.; Yan, R.; Wang, C.; Sun, J., Memristive circuit implementation of biological nonassociative learning mechanism and its applications, IEEE Trans. Biomed. Circuits Syst., 14, 5, 1036-1050 (2020)
[9] Guo, Z.; Wang, J.; Yan, Z., Attractivity analysis of memristor-based cellular neural networks with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 25, 4, 704-717 (2014)
[10] Zhang, G.; Shen, Y., Exponential stabilization of memristor-based chaotic neural networks with time-varying delays via intermittent control, IEEE Trans. Neural Netw. Learn. Syst., 26, 7, 1431-1441 (2015)
[11] Yao, W.; Wang, C.; Sun, Y.; Zhou, C.; Lin, H., Exponential multistability of memristive Cohen-Grossberg neural networks with stochastic parameter perturbations, Appl. Math. Comput., 386, 125483 (2020) · Zbl 1497.93194
[12] Lin, H.; Wang, C.; Sun, Y.; Yao, W., Firing multistability in a locally active memristive neuron model, Nonlinear Dyn., 100, 3667-3683 (2020)
[13] Yao, W.; Wang, C.; Cao, J.; Sun, Y.; Zhou, C., Hybrid multisynchronization of coupled multistable memristive neural networks with time delays, Neurocomputing, 363, 281-294 (2019)
[14] Wu, H.; Li, R.; Zhang, X.; Yao, R., Adaptive finite-time complete periodic synchronization of memristive neural networks with time delays, Neural Process. Lett., 42, 3, 563-583 (2015)
[15] Fu, Q.; Zhong, S.; Jiang, W.; Xie, W., Projective synchronization of fuzzy memristive neural networks with pinning impulsive control, J. Frankl. Inst., 357, 15, 10387-10409 (2020) · Zbl 1450.93030
[16] Zhou, C.; Wang, C.; Sun, Y.; Yao, W., Weighted sum synchronization of memristive coupled neural networks, Neurocomputing, 403, 211-223 (2020)
[17] Zhou, Y.; Zeng, Z., Event-triggered impulsive control on quasi-synchronization of memristive neural networks with time-varying delays, Neural Netw., 110, 55-65 (2019) · Zbl 1441.93188
[18] Yang, X.; Cao, J.; Liang, J., Exponential synchronization of memristive neural networks with delays: interval matrix method, IEEE Trans. Neural Netw. Learn. Syst., 28, 8, 1878-1888 (2017)
[19] Yao, W.; Wang, C.; Sun, Y.; Zhou, C.; Lin, H., Synchronization of inertial memristive neural networks with time-varying delays via static or dynamic event-triggered control, Neurocomputing, 404, 367-380 (2020)
[20] Feng, Y.; Yang, X.; Song, Q.; Cao, J., Synchronization of memristive neural networks with mixed delays via quantized intermittent control, Appl. Math. Comput., 339, 874-887 (2018) · Zbl 1428.93008
[21] Yao, W.; Wang, C.; Sun, Y.; Zhou, C., Robust multimode function synchronization of memristive neural networks with parameter perturbations and time-varying delays, IEEE Trans. Syst., Man, Cybern., 52, 1, 260-274 (2022)
[22] Song, Y.; Zeng, Z.; Sun, W.; Jiang, F., Quasi-synchronization of stochastic memristor-based neural networks with mixed delays and parameter mismatches, Neural Comput. Appl., 32, 9, 4615-4628 (2020)
[23] Singer, W., Synchronization of cortical activity and its putative role in information processing and learning, Annu. Rev. Physiol., 55, 1, 349-374 (1993)
[24] Hoppensteadt, F. C.; Izhikevich, E. M., Pattern recognition via synchronization in phase-locked loop neural networks, IEEE Trans. Neural Netw., 11, 3, 734-738 (2000)
[25] Song, X.; Man, J.; Song, S.; Zhang, Y.; Ning, Z., Finite/fixed-time synchronization for Markovian complex-valued memristive neural networks with reaction-diffusion terms and its application, Neurocomputing, 414, 131-142 (2020)
[26] Wang, W.; Yu, X.; Luo, X.; Kurths, J., Synchronization control of memristive multidirectional associative memory neural networks and applications in network security communication, IEEE Access, 6, 36002-36018 (2018)
[27] Guo, Y.; Luo, Y.; Wang, W.; Luo, X.; Ge, C.; Kurths, J.; Yuan, M.; Gao, Y., Fixed-time synchronization of complex-valued memristive BAM neural network and applications in image encryption and decryption, Int. J. Control Autom. Syst., 18, 2, 462-476 (2020)
[28] Wang, W.; Jia, X.; Luo, X.; Kurths, J.; Yuan, M., Fixed-time synchronization control of memristive MAMneural networks with mixed delays and application in chaotic secure communication, Chaos, Solitons Fractals, 126, 85-96 (2019) · Zbl 1448.93151
[29] Yuan, M.; Wang, W.; Wang, Z.; Luo, X.; Kurths, J., Exponential synchronization of delayed memristor-based uncertain complex-valued neural networks for image protection, IEEE Trans. Neural Netw. Learn. Syst., 32, 1, 151-165 (2021)
[30] Doyal, A.; Zhan, J., Triple DoS: DDoS defence and traceback, Int. J. Inf. Priv., Secur. Integr., 1, 4, 299-311 (2013)
[31] Deng, Y.; Yin, X.; Hu, S., Event-triggered predictive control for networked control systems with DoS attacks, Inf. Sci., 542, 71-91 (2021) · Zbl 1478.93387
[32] Wakaiki, M.; Cetinkaya, A.; Ishii, H., Stabilization of networked control systems under DoSattacks and output quantization, IEEE Trans. Autom. Control, 65, 8, 3560-3575 (2020) · Zbl 07256459
[33] Liu, S.; Wei, G.; Song, Y.; Liu, Y., Extended Kalman filtering for stochastic nonlinear systems with randomly occurring cyber attacks, Neurocomputing, 207, 708-716 (2016)
[34] Liu, L.; Ma, L.; Zhang, J.; Bo, Y., Sliding mode control for nonlinear Markovian jump systems under denial-of-service attacks, IEEE/CAA J. Autom. Sin., 7, 6, 1638-1648 (2020)
[35] Ye, D.; Shao, Y., Quasi-synchronization of heterogeneous nonlinear multi-agent systems subject to DoS attacks with impulsive effects, Neurocomputing, 366, 131-139 (2019)
[36] Wang, Z.; Xu, Y.; Lu, R.; Peng, H., Finite-time state estimation for coupled Markovian neural networks with sensor nonlinearities, IEEE Trans. Neural Netw. Learn. Syst., 28, 3, 630-638 (2017)
[37] Shen, B.; Wang, Z.; Ding, D.; Shu, H., \(H_\infty\) state estimation for complex networks with uncertain inner coupling and incomplete measurements, IEEE Trans. Neural Netw. Learn. Syst., 24, 12, 2027-2037 (2013)
[38] Xu, Y.; Lu, R.; Peng, H.; Xie, K.; Xue, A., Asynchronous dissipative state estimation for stochastic complex networks with quantized jumping coupling and uncertain measurements, IEEE Trans. Neural Netw. Learn. Syst., 28, 2, 268-277 (2017)
[39] Xu, Y.; Li, Q.; Li, W., Periodically intermittent discrete observation control for synchronization of fractional-order coupled systems, Commun. Nonlinear Sci. Numer. Simul., 74, 219-235 (2019) · Zbl 1464.34025
[40] Jiang, G.-P.; Tang, W. K.-S.; Chen, G., A state-observer-based approach for synchronization in complex dynamical networks, IEEE Trans. Circuits Syst. I, 53, 12, 2739-2745 (2006) · Zbl 1374.37128
[41] Ouyang, H.; Xu, X.; Zhang, G., Energy-shaping-based nonlinear controller design for rotary cranes with double-pendulum effect considering actuator saturation, Autom. Constr., 111, 103054 (2020)
[42] Seuret, A.; Da Silva Jr, J. M.G., Taking into account period variations and actuator saturation in sampled-data systems, Syst. Control Lett., 61, 12, 1286-1293 (2012) · Zbl 1255.93083
[43] Wu, Z.-G.; Shi, P.; Su, H.; Chu, J., Local synchronization of chaotic neural networks with sampled-data and saturating actuators, IEEE Trans. Cybern., 44, 12, 2635-2645 (2014)
[44] Karthick, S.; Sakthivel, R.; Wang, C.; Ma, Y.-K., Synchronization of coupled memristive neural networks with actuator saturation and switching topology, Neurocomputing, 383, 138-150 (2020)
[45] Huang, H.; Li, D.; Lin, Z.; Xi, Y., An improved robust model predictive control design in the presence of actuator saturation, Automatica, 47, 4, 861-864 (2011) · Zbl 1215.93049
[46] Ma, Y.; Fu, L., \(H_\infty\) robust exponential stability and memory state feedback control for uncertain singular time-delay systems with saturating actuators, IET Control Theory Appl., 10, 3, 328-338 (2016)
[47] Qin, J.; Fu, W.; Zheng, W. X.; Gao, H., On the bipartite consensus for generic linear multiagent systems with input saturation, IEEE Trans. Cybern., 47, 8, 1948-1958 (2017)
[48] Filippov, A., Classical solutions of differential equations with multi-valued right-hand side, SIAM J. Control, 5, 4, 609-621 (1967) · Zbl 0238.34010
[49] J.-P. Aubin, A. Cellina, Differential inclusions: set-valued maps and viability theory 6 (1986) 215-217.
[50] Wang, S.; Cao, Y.; Huang, T.; Chen, Y.; Wen, S., Event-triggered distributed control for synchronization of multiple memristive neural networks under cyber-physical attacks, Inf. Sci., 518, 361-375 (2020) · Zbl 1461.93320
[51] Zhou, C.; Wang, C.; Sun, Y.; Yao, W.; Lin, H., Cluster output synchronization for memristive neural networks, Inf. Sci., 589, 459-477 (2022)
[52] Curran, P.; Chua, L., Absolute stability theory and the synchronization problem, Int. J. Bifurc. Chaos, 7, 06, 1375-1382 (1997) · Zbl 0910.34054
[53] Zhu, S.; Bao, H., Event-triggered synchronization of coupled memristive neural networks, Appl. Math. Comput., 415, 126715 (2022) · Zbl 1510.93012
[54] Guo, Z.; Wang, S.; Wang, J., Global exponential synchronization of coupled delayed memristive neural networks with reaction-diffusion terms via distributed pinning controls, IEEE Trans. Neural Netw. Learn. Syst., 32, 1, 105-116 (2021)
[55] Huang, S.; Xiang, Z.; Karimi, H. R., Robust l2-gain control for 2D nonlinear stochastic systems with time-varying delays and actuator saturation, J. Frankl. Inst., 350, 7, 1865-1885 (2013) · Zbl 1392.93049
[56] Seuret, A.; Gouaisbaut, F., Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49, 9, 2860-2866 (2013) · Zbl 1364.93740
[57] Kaviarasan, B.; Sakthivel, R.; Lim, Y., Synchronization of complex dynamical networks with uncertain inner coupling and successive delays based on passivity theory, Neurocomputing, 186, 127-138 (2016)
[58] Faydasicok, O.; Arik, S., A new upper bound for the norm of interval matrices with application to robust stability analysis of delayed neural networks, Neural Netw., 44, 64-71 (2013) · Zbl 1296.92085
[59] Zhang, G.; Shen, Y., New algebraic criteria for synchronization stability of chaotic memristive neural networks with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 24, 10, 1701-1707 (2013)
[60] Li, Y.; Shi, L.; Cheng, P.; Chen, J.; Quevedo, D. E., Jamming attacks on remote state estimation in cyber-physical systems: a game-theoretic approach, IEEE Trans. Autom. Control, 60, 10, 2831-2836 (2015) · Zbl 1360.93674
[61] Ding, K.; Dey, S.; Quevedo, D. E.; Shi, L., Stochastic game in remote estimation under DoSattacks, IEEE Control Syst. Lett., 1, 1, 146-151 (2017)
[62] Li, C.; Lin, D.; Feng, B.; L, J.; Hao, F., Cryptanalysis of a chaotic image encryption algorithm based on information entropy, IEEE Access, 6, 75834-75842 (2018)
[63] Alvarez, G.; Li, S., Some basic cryptographic requirements for chaos-based cryptosystems, Int. J. Bifurc. Chaos, 16, 08, 2129-2151 (2006) · Zbl 1192.94088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.