×

A new and flexible design construction for orthogonal arrays for modern applications. (English) Zbl 07547938

Summary: Orthogonal array, a classical and effective tool for collecting data, has been flourished with its applications in modern computer experiments and engineering statistics. Driven by the wide use of computer experiments with both qualitative and quantitative factors, multiple computer experiments, multifidelity computer experiments, cross-validation and stochastic optimization, orthogonal arrays with certain structures have been introduced. Sliced orthogonal arrays and nested orthogonal arrays are examples of such arrays. This article introduces a flexible, fresh construction method, which uses smaller arrays and a special structure. The method uncovers the hidden structure of many existing fixed-level orthogonal arrays of given run sizes, possibly with more columns. It also allows fixed-level orthogonal arrays of nearly strength three to be constructed, which are useful as there are not many construction methods for fixed-level orthogonal arrays of strength three, and also helpful for generating Latin hypercube designs with desirable low-dimensional projections. Theoretical properties of the proposed method are explored. As by-products, several theoretical results on orthogonal arrays are obtained.

MSC:

62K15 Factorial statistical designs
62K05 Optimal statistical designs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] AI, M., JIANG, B. and LI, K. (2014). Construction of sliced space-filling designs based on balanced sliced orthogonal arrays. Statist. Sinica 24 1685-1702. · Zbl 1480.05017
[2] BOSE, R. C. and BUSH, K. A. (1952). Orthogonal arrays of strength two and three. Ann. Math. Stat. 23 508-524. · Zbl 0048.00803 · doi:10.1214/aoms/1177729331
[3] DENG, X., HUNG, Y. and LIN, C. D. (2015). Design for computer experiments with qualitative and quantitative factors. Statist. Sinica 25 1567-1581. · Zbl 1377.62165
[4] DENG, X., LIN, C. D., LIU, K. W. and ROWE, R. K. (2017). Additive Gaussian process for computer models with qualitative and quantitative factors. Technometrics 25 1567-1581. · Zbl 1377.62165
[5] Dey, A. and Mukerjee, R. (1999). Fractional Factorial Plans. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York. · Zbl 0930.62081 · doi:10.1002/9780470316986
[6] EENDEBAK, P. and SCHOEN, E. (2017). Complete series of non-isomorphic orthogonal arrays. Available at http://www.pietereendebak.nl/oapackage/series.html.
[7] GOH, J., BINGHAM, D., HOLLOWAY, J. P., GROSSKOPF, M. J., KURANZ, C. C. and RUTTER, E. (2013). Prediction and computer model calibration using outputs from multifidelity simulators. Technometrics 55 501-512. · doi:10.1080/00401706.2013.838910
[8] GOPALAKRISHNAN, K. and STINSON, D. R. (2006). Applications of orthogonal arrays to computer science. In Proceeding of ICDM 149-164. · Zbl 1190.05030
[9] GUPTA, V. K., NIGAM, A. K. and DEY, A. (1982). Orthogonal main-effect plans for asymmetrical factorials. Technometrics 24 135-137. · doi:10.2307/1268491
[10] HAALAND, B. and QIAN, P. Z. G. (2011). Accurate emulators for large-scale computer experiments. Ann. Statist. 39 2974-3002. · Zbl 1246.65172 · doi:10.1214/11-AOS929
[11] HE, X. and QIAN, P. Z. G. (2014). A central limit theorem for general orthogonal array based space-filling designs. Ann. Statist. 42 1725-1750. · Zbl 1314.60074 · doi:10.1214/14-AOS1231
[12] HE, X. and QIAN, P. Z. G. (2016). A central limit theorem for nested or sliced Latin hypercube designs. Statist. Sinica 26 1117-1128. · Zbl 1356.62101
[13] HE, Y., LIN, C. D. and SUN, F. (2017). On construction of marginally coupled designs. Statist. Sinica 27 665-683. · Zbl 1391.62153
[14] HE, Y., LIN, C. D. and SUN, F. (2019). Construction of marginally coupled designs by subspace theory. Bernoulli 25 2163-2182. · Zbl 1466.62376 · doi:10.3150/18-BEJ1049
[15] HE, Y., LIN, C. D. and SUN, F. (2022). Supplement to “A new and flexible design construction for orthogonal arrays for modern applications.” https://doi.org/10.1214/21-AOS2159SUPP
[16] HE, Y., LIN, C. D., SUN, F. and LV, B. (2017). Marginally coupled designs for two-level qualitative factors. J. Statist. Plann. Inference 187 103-108. · Zbl 1391.62154 · doi:10.1016/j.jspi.2017.02.010
[17] He, Y. and Tang, B. (2013). Strong orthogonal arrays and associated Latin hypercubes for computer experiments. Biometrika 100 254-260. · Zbl 1284.62487 · doi:10.1093/biomet/ass065
[18] HEDAYAT, A. S. (1986). Orthogonal arrays of strength \[t+\] and their statistical applications. Technical report, Univ. Illinois, Chicago, IL.
[19] HEDAYAT, A. S. (1990). New properties of orthogonal arrays and their statistical applications. In Statistical Design and Analysis of Industrial Experiments (S. Ghosh, ed.) 407-422. Dekker, New York. · Zbl 0732.62075
[20] HEDAYAT, A. S. (2017). A scientific tour on orthogonal arrays. In Mathematics Across Contemporary Sciences (T. Abualrub, A. Jarrah, S. Kallel and H. Sulieman, eds.). Springer Proc. Math. Stat. 190 111-135. Springer, Cham. · Zbl 1402.94113 · doi:10.1007/978-3-319-46310-0_7
[21] Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal Arrays: Theory and Applications. Springer Series in Statistics. Springer, New York. · Zbl 0935.05001 · doi:10.1007/978-1-4612-1478-6
[22] HUANG, H., LIN, D. K. J., LIU, M.-Q. and YANG, J.-F. (2016). Computer experiments with both qualitative and quantitative variables. Technometrics 58 495-507. · doi:10.1080/00401706.2015.1094416
[23] HWANG, Y., QIAN, P. Z. G. and HE, X. (2016). Sliced orthogonal array-based Latin hypercube designs. Technometrics 58 50-61. · doi:10.1080/00401706.2014.993092
[24] KONG, X., AI, M. and TSUI, K. L. (2018). Flexible sliced designs for computer experiments. Ann. Inst. Statist. Math. 70 631-646. · Zbl 1398.62210 · doi:10.1007/s10463-017-0603-3
[25] LEKIVETZ, R., SITTER, R., BINGHAM, D., HAMADA, M. S., MOORE, L. M. and WENDELBERGER, J. R. (2015). On algorithms for obtaining orthogonal and near-orthogonal arrays for main-effects screening. J. Qual. Technol. 47 2-13.
[26] LIN, C. D., SITTER, R. R. and TANG, B. (2012). Creating catalogues of two-level nonregular fractional factorial designs based on the criteria of generalized aberration. J. Statist. Plann. Inference 142 445-456. · Zbl 1231.62147 · doi:10.1016/j.jspi.2011.08.003
[27] Mukerjee, R., Sun, F. and Tang, B. (2014). Nearly orthogonal arrays mappable into fully orthogonal arrays. Biometrika 101 957-963. · Zbl 1306.62125 · doi:10.1093/biomet/asu042
[28] MUKERJEE, R. and WU, C. F. J. (2006). A Modern Theory of Factorial Designs. Springer Series in Statistics. Springer, New York. · Zbl 1271.62179
[29] Owen, A. B. (1992). Orthogonal arrays for computer experiments, integration and visualization. Statist. Sinica 2 439-452. · Zbl 0822.62064
[30] QIAN, P. Z. G., AI, M. and WU, C. F. J. (2009). Construction of nested space-filling designs. Ann. Statist. 37 3616-3643. · Zbl 1369.62195 · doi:10.1214/09-AOS690
[31] QIAN, P. Z. G., TANG, B. and WU, C. F. J. (2009). Nested space-filling designs for computer experiments with two levels of accuracy. Statist. Sinica 19 287-300. · Zbl 1153.62059
[32] QIAN, P. Z. G. and WU, C. F. J. (2009). Sliced space-filling designs. Biometrika 96 945-956. · Zbl 1179.62104 · doi:10.1093/biomet/asp044
[33] Qian, P. Z. G., Wu, H. and Wu, C. F. J. (2008). Gaussian process models for computer experiments with qualitative and quantitative factors. Technometrics 50 383-396. · doi:10.1198/004017008000000262
[34] Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989). Design and analysis of computer experiments. Statist. Sci. 4 409-435. · Zbl 0955.62619
[35] SANTNER, T. J., WILLIAMS, B. J. and NOTZ, W. I. (2018). The Design and Analysis of Computer Experiments. Springer Series in Statistics. Springer, New York. · Zbl 1405.62110
[36] SLOANE, N. J. A. (2004). A library of orthogonal arrays. Available at http://neilsloane.com/oadir/.
[37] SUEN, C.-Y. (1989). Some resolvable orthogonal arrays with two symbols. Comm. Statist. Theory Methods 18 3875-3881. · Zbl 0696.62324 · doi:10.1080/03610928908830128
[38] SUN, F., LIU, M.-Q. and QIAN, P. Z. G. (2014). On the construction of nested space-filling designs. Ann. Statist. 42 162-193. · Zbl 1297.62178 · doi:10.1214/14-AOS1229
[39] Sun, F., Wang, Y. and Xu, H. (2019). Uniform projection designs. Ann. Statist. 47 641-661. · Zbl 1417.62226 · doi:10.1214/18-AOS1705
[40] Tang, B. (1993). Orthogonal array-based Latin hypercubes. J. Amer. Statist. Assoc. 88 1392-1397. · Zbl 0792.62066
[41] Wang, J. C. and Wu, C. F. J. (1992). Nearly orthogonal arrays with mixed levels and small runs. Technometrics 34 409-422. · Zbl 0850.62623
[42] WEI, Y. and XIONG, S. (2019). Bayesian integrative analysis for multi-fidelity computer experiments. J. Appl. Stat. 46 1973-1987. · Zbl 1516.62658 · doi:10.1080/02664763.2019.1575340
[43] WU, C. F. J. and HAMADA, M. S. (2009). Experiments: Planning, Analysis, and Optimization, 2nd ed. Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ. · Zbl 1229.62100
[44] Xu, H. (2002). An algorithm for constructing orthogonal and nearly-orthogonal arrays with mixed levels and small runs. Technometrics 44 356-368. · doi:10.1198/004017002188618554
[45] XU, H., CHENG, S.-W. and WU, C. F. J. (2004). Optimal projective three-level designs for factor screening and interaction detection. Technometrics 46 280-292. · doi:10.1198/004017004000000310
[46] Xu, H., Phoa, F. K. H. and Wong, W. K. (2009). Recent developments in nonregular fractional factorial designs. Stat. Surv. 3 18-46. · Zbl 1300.62056 · doi:10.1214/08-SS040
[47] YANG, F., LIN, C. D., ZHOU, Y. D. and HE, Y. (2021). Doubly coupled designs for computer experiments with both qualitative and quantitative factors. Statist. Sinica. · doi:0.5705/ss.202020.0317
[48] YANG, J.-F., LIN, C. D., QIAN, P. Z. G. and LIN, D. K. J. (2013). Construction of sliced orthogonal Latin hypercube designs. Statist. Sinica 23 1117-1130. · Zbl 06202700
[49] YANG, X., CHEN, H. and LIU, M.-Q. (2014). Resolvable orthogonal array-based uniform sliced Latin hypercube designs. Statist. Probab. Lett. 93 108-115. · Zbl 1316.62122 · doi:10.1016/j.spl.2014.06.021
[50] Zhang, Y., Tao, S., Chen, W. and Apley, D. W. (2020). A latent variable approach to Gaussian process modeling with qualitative and quantitative factors. Technometrics 62 291-302. · doi:10.1080/00401706.2019.1638834
[51] ZHOU, Y. and TANG, B. (2019). Column-orthogonal strong orthogonal arrays of strength two plus and three minus. Biometrika 106 997-1004 · Zbl 1435.62302 · doi:10.1093/biomet/asz043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.