×

Uniform convergence of local Fréchet regression with applications to locating extrema and time warping for metric space valued trajectories. (English) Zbl 07547942

Summary: Local Fréchet regression is a nonparametric regression method for metric space valued responses and Euclidean predictors, which can be utilized to obtain estimates of smooth trajectories taking values in general metric spaces from noisy metric space valued random objects. We derive uniform rates of convergence, which so far have eluded theoretical analysis of this method, for both fixed and random target trajectories, where we utilize tools from empirical processes. These results are shown to be widely applicable in metric space valued data analysis. In addition to simulations, we provide two pertinent examples where these results are important: The consistent estimation of the location of properly defined extrema in metric space valued trajectories, which we illustrate with the problem of locating the age of minimum brain connectivity as obtained from fMRI data; and time warping for metric space valued trajectories, illustrated with yearly age-at-death distributions for different countries.

MSC:

62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference
62G08 Nonparametric regression and quantile regression
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Agueh, M. and Carlier, G. (2011). Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43 904-924. · Zbl 1223.49045 · doi:10.1137/100805741
[2] AMBROSIO, L., GIGLI, N. and SAVARÉ, G. (2004). Gradient flows with metric and differentiable structures, and applications to the Wasserstein space. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 15 327-343. · Zbl 1162.35349
[3] Balabdaoui, F., Rufibach, K. and Wellner, J. A. (2009). Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Statist. 37 1299-1331. · Zbl 1160.62008 · doi:10.1214/08-AOS609
[4] BELITSER, E., GHOSAL, S. and VAN ZANTEN, H. (2012). Optimal two-stage procedures for estimating location and size of the maximum of a multivariate regression function. Ann. Statist. 40 2850-2876. · Zbl 1296.62158 · doi:10.1214/12-AOS1053
[5] Bhattacharya, R. and Patrangenaru, V. (2003). Large sample theory of intrinsic and extrinsic sample means on manifolds. I. Ann. Statist. 31 1-29. · Zbl 1020.62026 · doi:10.1214/aos/1046294456
[6] BHATTACHARYA, R. and PATRANGENARU, V. (2005). Large sample theory of intrinsic and extrinsic sample means on manifolds. II. Ann. Statist. 33 1225-1259. · Zbl 1072.62033 · doi:10.1214/009053605000000093
[7] BUCKNER, R. L., SEPULCRE, J., TALUKDAR, T., KRIENEN, F. M., LIU, H., HEDDEN, T., ANDREWS-HANNA, J. R., SPERLING, R. A. and JOHNSON, K. A. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29 1860-1873.
[8] BULLMORE, E. and SPORNS, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10 186-198.
[9] CAI, J., LIU, A., MI, T., GARG, S., TRAPPE, W., MCKEOWN, M. J. and WANG, Z. J. (2019). Dynamic graph theoretical analysis of functional connectivity in Parkinson’s disease: The importance of Fiedler value. IEEE J. Biomed. Health Inform. 23 1720-1729.
[10] CHEN, Y. and MÜLLER, H.-G. (2022). Supplement to “Uniform convergence of local Fréchet regression with applications to locating extrema and time warping for metric space valued trajectories.” https://doi.org/10.1214/21-AOS2163SUPP
[11] DAVIS, B. C., FLETCHER, P. T., BULLITT, E. and JOSHI, S. (2007). Population shape regression from random design data. In 2007 IEEE 11th International Conference on Computer Vision.
[12] DE HAAN, W., VAN DER FLIER, W. M., WANG, H., VAN MIEGHEM, P. F., SCHELTENS, P. and STAM, C. J. (2012). Disruption of functional brain networks in Alzheimer’s disease: What can we learn from graph spectral analysis of resting-state magnetoencephalography? Brain Connect. 2 45-55.
[13] DENNIS, E. L. and THOMPSON, P. M. (2014). Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol. Rev. 24 49-62. · doi:10.1007/s11065-014-9249-6
[14] DEVROYE, L. P. (1978). The uniform convergence of nearest neighbor regression function estimators and their application in optimization. IEEE Trans. Inf. Theory 24 142-151. · Zbl 0375.62083 · doi:10.1109/tit.1978.1055865
[15] Dryden, I. L., Koloydenko, A. and Zhou, D. (2009). Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging. Ann. Appl. Stat. 3 1102-1123. · Zbl 1196.62063 · doi:10.1214/09-AOAS249
[16] DUBEY, P. and MÜLLER, H.-G. (2020). Functional models for time-varying random objects. J. R. Stat. Soc. Ser. B. Stat. Methodol. 82 275-327. · Zbl 07554756
[17] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Monographs on Statistics and Applied Probability 66. CRC Press, London. · Zbl 0873.62037
[18] FARAGÓ, A., LINDER, T. and LUGOSI, G. (1993). Fast nearest-neighbor search in dissimilarity spaces. IEEE Trans. Pattern Anal. Mach. Intell. 15 957-962.
[19] FERREIRA, L. K. and BUSATTO, G. F. (2013). Resting-state functional connectivity in normal brain aging. Neurosci. Biobehav. Rev. 37 384-400.
[20] Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Math. J. 23 298-305. · Zbl 0265.05119
[21] FRÉCHET, M. (1948). Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincaré 10 215-310. · Zbl 0035.20802
[22] GASSER, T. and KNEIP, A. (1995). Searching for structure in curve samples. J. Amer. Statist. Assoc. 90 1179-1188. · Zbl 0864.62019
[23] GERVINI, D. and GASSER, T. (2004). Self-modelling warping functions. J. R. Stat. Soc. Ser. B. Stat. Methodol. 66 959-971. · Zbl 1061.62052 · doi:10.1111/j.1467-9868.2004.B5582.x
[24] GONG, D. and MEDIONI, G. (2011). Dynamic manifold warping for view invariant action recognition. In Proceedings of International Conference on Computer Vision 571-578.
[25] Hein, M. (2009). Robust nonparametric regression with metric-space valued output. In Advances in Neural Information Processing Systems 718-726.
[26] HOFFMAN, A. J. and WIELANDT, H. W. (1953). The variation of the spectrum of a normal matrix. Duke Math. J. 20 37-39. · Zbl 0051.00903
[27] HUCKEMANN, S. F. (2012). On the meaning of mean shape: Manifold stability, locus and the two sample test. Ann. Inst. Statist. Math. 64 1227-1259. · Zbl 1440.62201 · doi:10.1007/s10463-012-0352-2
[28] HUCKEMANN, S. F. (2015). (Semi-)Intrinsic statistical analysis on non-Euclidean spaces. In Advances in Complex Data Modeling and Computational Methods in Statistics 103-118. Springer, New York.
[29] JAMES, G. M. (2007). Curve alignment by moments. Ann. Appl. Stat. 1 480-501. · Zbl 1126.62001 · doi:10.1214/07-AOAS127
[30] Kloeckner, B. (2010). A geometric study of Wasserstein spaces: Euclidean spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 297-323. · Zbl 1218.53079
[31] Kneip, A. and Gasser, T. (1992). Statistical tools to analyze data representing a sample of curves. Ann. Statist. 20 1266-1305. · Zbl 0785.62042 · doi:10.1214/aos/1176348769
[32] Le Gouic, T. and Loubes, J.-M. (2017). Existence and consistency of Wasserstein barycenters. Probab. Theory Related Fields 168 901-917. · Zbl 1406.60019 · doi:10.1007/s00440-016-0727-z
[33] MACK, Y. P. and SILVERMAN, B. W. (1982). Weak and strong uniform consistency of kernel regression estimates. Z. Wahrsch. Verw. Gebiete 61 405-415. · Zbl 0495.62046 · doi:10.1007/BF00539840
[34] Marron, J. S., Ramsay, J. O., Sangalli, L. M. and Srivastava, A. (2015). Functional data analysis of amplitude and phase variation. Statist. Sci. 30 468-484. · Zbl 1426.62146 · doi:10.1214/15-STS524
[35] MEVEL, K., LANDEAU, B., FOUQUET, M., LA JOIE, R., VILLAIN, N., MÉZENGE, F., PERROTIN, A., EUSTACHE, F., DESGRANGES, B. and CHÉTELAT, G. (2013). Age effect on the default mode network, inner thoughts, and cognitive abilities. Neurobiol. Aging 34 1292-1301.
[36] MÜLLER, H.-G. (1989). Adaptive nonparametric peak estimation. Ann. Statist. 17 1053-1069. · Zbl 0683.62019 · doi:10.1214/aos/1176347255
[37] PARZEN, E. (1962). On estimation of a probability density function and mode. Ann. Math. Stat. 33 1065-1076. · Zbl 0116.11302 · doi:10.1214/aoms/1177704472
[38] Pelletier, B. (2006). Non-parametric regression estimation on closed Riemannian manifolds. J. Nonparametr. Stat. 18 57-67. · Zbl 1088.62053 · doi:10.1080/10485250500504828
[39] Petersen, A. and Müller, H.-G. (2019). Fréchet regression for random objects with Euclidean predictors. Ann. Statist. 47 691-719. · Zbl 1417.62091 · doi:10.1214/17-AOS1624
[40] PETERSEN, A., ZHAO, J., CARMICHAEL, O. and MÜLLER, H.-G. (2016). Quantifying individual brain connectivity with functional principal component analysis for networks. Brain Connect. 6 540-547.
[41] PHILLIPS, D. J., MCGLAUGHLIN, A., RUTH, D., JAGER, L. R., SOLDAN, A. and ADNI (2015). Graph theoretic analysis of structural connectivity across the spectrum of Alzheimer’s disease: The importance of graph creation methods. NeuroImage Clin. 7 377-390.
[42] RAMSAY, J. O. and LI, X. (1998). Curve registration. J. R. Stat. Soc. Ser. B. Stat. Methodol. 60 351-363. · Zbl 0909.62033 · doi:10.1111/1467-9868.00129
[43] RUBINOV, M. and SPORNS, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52 1059-1069.
[44] RUPPERT, D. and WAND, M. P. (1994). Multivariate locally weighted least squares regression. Ann. Statist. 22 1346-1370. · Zbl 0821.62020 · doi:10.1214/aos/1176325632
[45] SAKOE, H. and CHIBA, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26 43-49. · Zbl 0371.68035
[46] SILVERMAN, B. W. (1978). Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Statist. 6 177-184. · Zbl 0376.62024
[47] STEINKE, F. and HEIN, M. (2009). Non-parametric regression between manifolds. In Advances in Neural Information Processing Systems 1561-1568.
[48] Steinke, F., Hein, M. and Schölkopf, B. (2010). Nonparametric regression between general Riemannian manifolds. SIAM J. Imaging Sci. 3 527-563. · Zbl 1195.41011 · doi:10.1137/080744189
[49] Sturm, K.-T. (2003). Probability measures on metric spaces of nonpositive curvature. In Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002). Contemp. Math. 338 357-390. Amer. Math. Soc., Providence, RI. · Zbl 1040.60002 · doi:10.1090/conm/338/06080
[50] TANG, R. and MÜLLER, H.-G. (2008). Pairwise curve synchronization for functional data. Biometrika 95 875-889. · Zbl 1437.62625 · doi:10.1093/biomet/asn047
[51] TRIGEORGIS, G., NICOLAOU, M. A., SCHULLER, B. W. and ZAFEIRIOU, S. (2018). Deep canonical time warping for simultaneous alignment and representation learning of sequences. IEEE Trans. Pattern Anal. Mach. Intell. 40 1128-1138. · doi:10.1109/TPAMI.2017.2710047
[52] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer Series in Statistics. Springer, New York. · Zbl 0862.60002 · doi:10.1007/978-1-4757-2545-2
[53] VIEU, P. (1996). A note on density mode estimation. Statist. Probab. Lett. 26 297-307. · Zbl 0847.62024 · doi:10.1016/0167-7152(95)00024-0
[54] VU, H. T., CAREY, C. and MAHADEVAN, S. (2012). Manifold warping: Manifold alignment over time. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence 1155-1161.
[55] Wang, K. and Gasser, T. (1997). Alignment of curves by dynamic time warping. Ann. Statist. 25 1251-1276. · Zbl 0898.62051
[56] Yuan, Y., Zhu, H., Lin, W. and Marron, J. S. (2012). Local polynomial regression for symmetric positive definite matrices. J. R. Stat. Soc. Ser. B. Stat. Methodol. 74 697-719. · Zbl 1411.62110 · doi:10.1111/j.1467-9868.2011.01022.x
[57] ZONNEVELD, H. I., PRUIM, R. H. R., BOS, D., VROOMAN, H. A., MUETZEL, R. L., HOFMAN, A., ROMBOUTS, S. A. R. B., VAN DER LUGT, A., NIESSEN, W. J. IKRAM, M. A. and VERNOOIJAB, M. W. (2019). Patterns of functional connectivity in an aging population: The Rotterdam study. NeuroImage 189 432-444
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.