×

Synchronization of multi-links systems with Lévy noise and application. (English) Zbl 1494.93141

Summary: In previous work, the synchronization of multi-links systems with Lévy noise (MLSLN) has not been fully investigated. Therefore, the synchronization of MLSLN is concerned via feedback discrete-time observations control. Therein, we provide a novel Lyapunov functional for MLSLN. Moreover, the upper bound of the state observations interval duration is obtained. By making use of Lyapunov functional method, some techniques of inequality and graph theory, we derive some sufficient conditions to guarantee the mean-squared asymptotical synchronization of MLSLN. Then, the theoretical results are employed to study the synchronization of single-link robot arms. Meantime, numerical simulations are given to demonstrate the effectiveness of the developed results.

MSC:

93E15 Stochastic stability in control theory
93C55 Discrete-time control/observation systems
60G51 Processes with independent increments; Lévy processes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wang, HZ; Liu, ZR; Xu, HH., Epidemic spreading on uncorrelated heterogenous networks with non-uniform transmission, Physica A, 382, 715-721 (2007) · doi:10.1016/j.physa.2007.04.034
[2] Ali, MS; Narayanan, G.; Shekher, V., Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms, Appl Math Comput, 369 (2020) · Zbl 1433.34106
[3] Wang, JL; Yang, ZC; Huang, TW, Synchronization criteria in complex dynamical networks with nonsymmetric coupling and multiple time-varying delays, Appl Anal, 91, 923-935 (2012) · Zbl 1266.34093 · doi:10.1080/00036811.2011.556624
[4] Xu, Y.; Shen, R.; Li, WX., Finite-time synchronization for coupled systems with time delay and stochastic disturbance under feedback control, J Appl Anal Comput, 10, 1-24 (2020) · Zbl 1461.93458
[5] Zhang, H.; Liu, J.; Xu, SY., H-Infinity load frequency control of networked power systems via an eventtriggered scheme, IEEE Trans Ind Electron (2019) · doi:10.1109/TIE.2019.2939994
[6] Liu, Y.; Yu, PR; Chu, DH, Stationary distribution of stochastic multi-group models with dispersal and telegraph noise, Nonlinear Anal Hybrid Syst, 33, 93-103 (2019) · Zbl 1429.92133 · doi:10.1016/j.nahs.2019.01.007
[7] Wu, YB; Li, HZ; Li, WX., Intermittent control strategy for synchronization analysis of time-varying complex dynamical networks, IEEE Trans Syst Man Cybern -Syst (2019) · doi:10.1109/TSMC.2019.2920451
[8] Huang, C.; Lu, JQ; Ho, DWC, Stabilization of probabilistic boolean networks via pinning control strategy, Inf Sci, 510, 205-217 (2020) · Zbl 1461.93381 · doi:10.1016/j.ins.2019.09.029
[9] Guo, Y.; Zhao, W.; Ding, XH., Input-to-state stability for stochastic multi-group models with multi-dispersal and time-varying delay, Appl Math Comput, 343, 114-127 (2019) · Zbl 1428.92107
[10] Zheng, MW; Li, LX; Peng, HP, Finite-time stability analysis for neutral-type neural networks with hybrid time-varying delays without using Lyapunov method, Neurocomputing, 238, 67-75 (2017) · doi:10.1016/j.neucom.2017.01.037
[11] Li, JN; Xu, YF; Gu, KY, Mixed passive/H-infinity hybrid control for delayed Markovian jump system with actuator constraints and fault alarm, Int J Robust Nonlinear Control, 28, 6016-6037 (2018) · Zbl 1405.93126 · doi:10.1002/rnc.4355
[12] Zhang, YP; Li, LX; Peng, HP., Finite-time synchronization for memristor-based BAM neural networks with stochastic perturbations and time-varying delays, Int J Robust Nonlinear Control, 28, 5118-5139 (2018) · Zbl 1402.93232 · doi:10.1002/rnc.4302
[13] Chen, C.; Li, LX; Peng, HP., Synchronization control of coupled memristor-based neural networks with mixed delays and stochastic perturbations, Neural Process Lett, 47, 679-696 (2018)
[14] Li, JN; Ren, W., Finite-Horizon H fault-tolerant constrained consensus for multiagent systems with communication delays, IEEE T Cybern (2019) · doi:10.1109/TCYB.2019.2954714
[15] Li, JN; Liu, X.; Ru, XF., Disturbance rejection adaptive fault-tolerant constrained consensus for multi-agent systems with failures, IEEE Trans Circuits Syst II-Express Briefs (2020) · doi:10.1109/TCSII.2020.2986059
[16] Li, JN; Gu, KY; Liu, X., Asynchronous adaptive fault-tolerant control for Markov jump systems with actuator failures and unknown nonlinear disturbances, Complexity, 2020 (2020) · Zbl 1435.93161
[17] Li, S.; Lv, CY; Ding, XH., Synchronization of stochastic hybrid coupled systems with multi-weights and mixed delays via aperiodically adaptive intermittent control, Nonlinear Anal Hybrid Syst, 35 (2020) · Zbl 1433.93146
[18] Wang, WP; Peng, HP; Li, LX, Finite-time function projective synchronization in complex multi-links networks with time-varying delay, Neural Process Lett, 41, 71-88 (2015) · doi:10.1007/s11063-013-9335-4
[19] Wu, XJ; Liu, Y.; Zhou, J., Pinning adaptive synchronization of general time-varying delayed and multi-linked networks with variable structures, Neurocomputing, 147, 492-499 (2015) · doi:10.1016/j.neucom.2014.06.031
[20] Zhao, H.; Li, LX; Peng, HP, Mean square modified function projective synchronization of uncertain complex network with multi-links and stochastic perturbations, Eur Phys J B, 88, 45 (2015) · Zbl 1515.34056
[21] Qiu, BL; Li, LX; Peng, HP, Asymptotic and finite-time synchronization of memristor-based switching networks with multi-links and impulsive perturbation, Neural Comput Appl, 31, 4031-4047 (2019) · doi:10.1007/s00521-017-3312-1
[22] Zheng, MW; Li, LX; Peng, HP., General decay synchronization of complex multi-links time-varying dynamic network, Commun Nonlinear Sci Numer Simul, 67, 108-123 (2019) · Zbl 1508.34060 · doi:10.1016/j.cnsns.2018.06.015
[23] Zhou, H.; Song, J.; Li, WX., Razumikhin method to stability of delay coupled systems with hybrid switching diffusions, Nonlinear Anal Hybrid Syst, 38 (2020) · Zbl 1478.93570 · doi:10.1016/j.nahs.2020.100934
[24] Zhou, H.; Jiang, QG; Li, WX, Stability of stochastic Lévy noise coupled systems with mixed delays, Int J Control (2020) · Zbl 1482.93693 · doi:10.1080/00207179.2020.1788728
[25] Li, S.; Zhang, BG; Li, WX., Stabilisation of multiweights stochastic complex networks with time-varying delay driven by G-Brownian motion via aperiodically intermittent adaptive control, Int J Control (2019) · Zbl 1461.93557 · doi:10.1080/00207179.2019.1577562
[26] Li, S.; Yao, XR; Li, WX., Almost sure exponential stabilization of hybrid stochastic coupled systems via intermittent noises: A higher-order nonlinear growth condition, J Math Anal Appl, 489 (2020) · Zbl 1447.93298
[27] Wu, YB; Zhu, JL; Li, WX., Intermittent discrete observation control for synchronization of stochastic neural networks, IEEE Trans Cybern, 50, 2414-2424 (2020) · doi:10.1109/TCYB.2019.2930579
[28] Wang, MX; Li, WX., Stability of random impulsive coupled systems on networks with Markovian switching, Stoch Anal Appl, 37, 1107-1132 (2019) · Zbl 1428.34083 · doi:10.1080/07362994.2019.1643247
[29] Wang, PF; Wang, WY; Su, H., Stability of stochastic discrete-time piecewise homogeneous Markov jump systems with time delay and impulsive effects, Nonlinear Anal Hybrid Syst, 38 (2020) · Zbl 1478.93724
[30] Sun, ZR; Lv, JL; Zou, XL., Dynamical analysis on two stochastic single-species models, Appl Math Lett, 99 (2020) · Zbl 1423.92223
[31] Zhu, QX., Asymptotic stability in the pth moment for stochastic differential equations with Lévy noise, J Math Anal Appl, 416, 126-142 (2014) · Zbl 1309.60065 · doi:10.1016/j.jmaa.2014.02.016
[32] Bao, JH; Yuan, CG., Stochastic population dynamics driven by Lévy noise, J Math Anal Appl, 391, 363-375 (2012) · Zbl 1316.92063 · doi:10.1016/j.jmaa.2012.02.043
[33] Zhou, H.; Li, YY; Li, WX., Synchronization for stochastic hybrid coupled controlled systems with Lévy noise, Math Method Appl Sci (2020) · Zbl 1458.34131 · doi:10.1002/mma.6624
[34] He, WL; Qian, F.; Cao, JD., Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control, Neural Netw, 85, 1-9 (2017) · Zbl 1429.93351 · doi:10.1016/j.neunet.2016.09.002
[35] Li, HL; Cao, JD; Jiang, HJ, Graph theory-based finite-time synchronization of fractional-order complex dynamical networks, J Frankl Inst Eng Appl Math, 355, 5771-5789 (2018) · Zbl 1451.93341 · doi:10.1016/j.jfranklin.2018.05.039
[36] Mao, XR., Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control, Automatica, 49, 3677-3681 (2013) · Zbl 1315.93083 · doi:10.1016/j.automatica.2013.09.005
[37] Shao, JH., Stabilization of regime-switching processes by feedback control based on discrete time observations, SIAM J Control Optim, 55, 724-740 (2017) · Zbl 1360.60115 · doi:10.1137/16M1066336
[38] Ren, Y.; Yin, WS; Sakthivel, R., Stabilization of stochastic differential equations driven by G-Brownian motion with feedback control based on discrete-time state observation, Automatica, 95, 146-151 (2018) · Zbl 1402.93256 · doi:10.1016/j.automatica.2018.05.039
[39] Li, MY; Shuai, ZS., Global-stability problem for coupled systems of differential equations on networks, J Differ Equ, 248, 1-20 (2010) · Zbl 1190.34063 · doi:10.1016/j.jde.2009.09.003
[40] Kunita, H., Itô’s stochastic calculus: its surprising power for applications, Stoch Process Their Appl, 120, 622-652 (2010) · Zbl 1202.60079 · doi:10.1016/j.spa.2010.01.013
[41] Applebaum, D., Lévy processes and stochastic calculus (2009), New York, NY: Cambridge University Press, New York, NY · Zbl 1200.60001
[42] Zhang, CM; Li, WX; Wang, K., Graph-theoretic method on exponential synchronization of stochastic coupled networks with Markovian switching, Nonlinear Anal Hybrid Syst, 15, 37-51 (2015) · Zbl 1301.93152 · doi:10.1016/j.nahs.2014.07.003
[43] Nykamp, DQ., White noise analysis of coupled linear-nonlinear systems, SIAM J Appl Math, 63, 1208-1230 (2003) · Zbl 1020.92010 · doi:10.1137/S0036139901397571
[44] Zhang, HW; Lewis, FL; Qu, ZH., Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs, IEEE Trans Ind Electron, 59, 3026-3041 (2012) · doi:10.1109/TIE.2011.2160140
[45] Ni, JK; Liu, L.; Liu, CX, Fixed-Time leader-following consensus for second-order multiagent systems with input delay, IEEE Trans Ind Electron, 64, 8635-8646 (2017) · doi:10.1109/TIE.2017.2701775
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.