×

Joint latent space models for ranking data and social network. (English) Zbl 1490.62015

Summary: Human interaction and communication has become one of the essential features of social life. Individuals’ preference may be influenced by those of their peers or friends in a social network. In the literature, individuals’ rank-order preferences and their social network are often modeled separately. In this article, we propose a new joint probabilistic model for ranking data and social network. With a latent space for all the individuals and items, the proposed model assume that the social network and rankings of items are governed by the locations of individuals and items. Based on an efficient MCMC algorithm, we develop a set of Bayesian inference approaches for the proposed model, including procedures of model selection, criteria to evaluate model fitness and a test for conditional independence between individuals’ rankings and their social network given their positions in the latent space. Simulation studies reveal the usefulness of our proposed methods for parameter estimation, model fitness evaluation, model selection and conditional independence testing. Finally, we apply our model to the CiaoDVD dataset which consists of users’ trust relations and their implicit preferences on DVD categories.

MSC:

62-08 Computational methods for problems pertaining to statistics
62F15 Bayesian inference
62P25 Applications of statistics to social sciences
91D30 Social networks; opinion dynamics

Software:

LINE; node2vec; DeepWalk
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Airoldi, EM; Blei, DM; Fienberg, SE; Xing, EP, Mixed Membership Stochastic Blockmodels, J. Mach. Learn. Res., 9, 1981-2014 (2008) · Zbl 1225.68143
[2] Alvo, M.; Yu, PLH, Statistical Methods for Ranking Data (2014), New York: Springer, New York · Zbl 1341.62001 · doi:10.1007/978-1-4939-1471-5
[3] Celeux, G.; Forbes, F.; Robert, CP; Titterington, DM, Deviance Information Criteria for Missing Data Models, Bayesian Anal., 1, 4, 651-673 (2006) · Zbl 1331.62329
[4] Chang, X.; Huang, D.; Wang, H., A Popularity Scaled Latent Space Model for Large-scale Directed Social Network, Stat. Sin., 29, 3, 1277-1299 (2019) · Zbl 1421.62165
[5] Christensen, KB; Makransky, G.; Horton, M., Critical Values for Yen’s \(Q_3\): Identification of Local Dependence in the Rasch Model Using Residual Correlations, Appl. Psychol. Meas., 41, 3, 178-194 (2016) · doi:10.1177/0146621616677520
[6] D’Angelo, S., Alfò, M., Fop, M.: Model-based Clustering for Multivariate Networks. arXiv preprint arXiv:2001.05260 (2020a)
[7] D’Angelo, S.; Alfò, M.; Murphy, TB, Modeling Node Heterogeneity in Latent Space Models for Multidimensional Networks, Stat. Neerl., 74, 3, 324-341 (2020) · Zbl 07778432 · doi:10.1111/stan.12209
[8] Duijn, MAJ; Snijders, TAB; Zijlstra, BJH, \(p_2\): A Random Effects Model with Covariates for Directed Graphs, Stat. Neerl., 58, 2, 234-254 (2004) · Zbl 1050.62117 · doi:10.1046/j.0039-0402.2003.00258.x
[9] Fosdick, BK; Hoff, PD, Testing and Modeling Dependencies between a Network and Modal Attributes, J. Am. Stat. Assoc., 110, 511, 1047-1056 (2015) · Zbl 1373.62273 · doi:10.1080/01621459.2015.1008697
[10] Gollini, I.; Murphy, TB, Joint Modeling of Multiple Network Views, J. Comput. Graph. Stat., 25, 1, 246-265 (2016) · doi:10.1080/10618600.2014.978006
[11] Gormley, I.C., Murphy, T.B.: A latent Space Model for Rank Data. In: Statistical Network Analysis: Models, Issues, and New Directions, Springer Berlin Heidelberg, pp 90-102, doi:10.1007/978-3-540-73133-7_7 (2006)
[12] Grover, A., Leskovec, J.: node2vec: Scalable Feature Learning for Networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, doi:10.1145/2939672.2939754 (2016)
[13] Guo, G., Zhang, J., Thalmann, D., Yorke-Smith, N.: ETAF: An Extended Trust Antecedents Framework for Trust Prediction. In: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), pp 540-547 (2014)
[14] Handcock, MS; Raftery, AE; Tantrum, JM, Model-based Clustering for Social Networks, J. R. Stat. Soc. A. Stat. Soc., 170, 2, 301-354 (2007) · doi:10.1111/j.1467-985x.2007.00471.x
[15] Hoff, PD, Bilinear Mixed-effects Models for Dyadic Data, J. Am. Stat. Assoc., 100, 469, 286-295 (2005) · Zbl 1117.62353 · doi:10.1198/016214504000001015
[16] Hoff, PD; Raftery, AE; Handcock, MS, Latent Space Approaches to Social Network Analysis, J. Am. Stat. Assoc., 97, 460, 1090-1098 (2002) · Zbl 1041.62098 · doi:10.1198/016214502388618906
[17] Holland, PW; Leinhardt, S., An Exponential Family of Probability Distributions for Directed Graphs, J. Am. Stat. Assoc., 76, 373, 33-50 (1981) · Zbl 0457.62090 · doi:10.1080/01621459.1981.10477598
[18] Krivitsky, PN; Handcock, MS; Raftery, AE; Hoff, PD, Representing Degree Distributions, Clustering, and Homophily in Social Networks with Latent Cluster Random Effects Models, Social Networks, 31, 3, 204-213 (2009) · doi:10.1016/j.socnet.2009.04.001
[19] Leung, H.L.: Wandering Ideal Point Models for Single or Multi-attribute Ranking Data: A Bayesian Approach. Master’s thesis, The University of Hong Kong (2003)
[20] Marden, J.I.: Analyzing and Modeling Rank Data. CRC Press (1996) · Zbl 0853.62006
[21] Meng, X.L.: Posterior Predictive \(p\)-values. Ann. Stat. 22(3), 1142-1160 (1994). doi:10.1214/aos/1176325622 · Zbl 0820.62027
[22] Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, doi:10.1145/2623330.2623732 (2014)
[23] Snijders, TA; Nowicki, K., Estimation and Prediction for Stochastic Blockmodels for Graphs with Latent Block Structure, J. Classif., 14, 1, 75-100 (1997) · Zbl 0896.62063 · doi:10.1007/s003579900004
[24] Spiegelhalter, DJ; Best, NG; Carlin, BP; van der Linde, A., Bayesian Measures of Model Complexity and Fit, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64, 4, 583-639 (2002) · Zbl 1067.62010 · doi:10.1111/1467-9868.00353
[25] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: Large-scale Information Network Embedding. In: Proceedings of the 24th International Conference on World Wide Web, International World Wide Web Conferences Steering Committee, doi:10.1145/2736277.2741093 (2015)
[26] Thurstone, LL, A Law of Comparative Judgment, Psychol. Rev., 34, 4, 273 (1927) · doi:10.1037/h0070288
[27] Wang, S.S., Paul, S., De Boeck, P.: Joint Latent Space Model for Social Networks with Multivariate Attributes. arXiv preprint arXiv:1910.12128 (2019)
[28] Yen, WM, Effects of Local Item Dependence on the Fit and Equating Performance of the Three-parameter Logistic model, Appl. Psychol. Meas., 8, 2, 125-145 (1984) · doi:10.1177/014662168400800201
[29] Yu, P.L.H.: Bayesian Analysis of Order-statistics Models for Ranking Data. Psychometrika 65(3), 281-299 (2000) · Zbl 1291.62265
[30] Yu, PLH; Chan, LKY, Bayesian Analysis of Wandering Vector Models for Displaying Ranking Data, Stat. Sin., 11, 445-461 (2001) · Zbl 0980.62016
[31] Yu, PLH; Gu, J.; Xu, H., Analysis of Ranking Data, Wiley Interdisciplinary Reviews: Computational Statistics, 11, 6, e1483 (2019) · doi:10.1002/wics.1483
[32] Zhang, X.: Statistical Analysis for Network Data Using Matrix Variate Models and Latent Space Models. Master’s thesis, University of Michigan (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.