×

Intensity estimation on geometric networks with penalized splines. (English) Zbl 1498.62089

Summary: In the past decades the growing amount of network data lead to many novel statistical models. In this paper we consider so-called geometric networks. Typical examples are road networks or other infrastructure networks. Nevertheless, the neurons or the blood vessels in a human body can also be interpreted as a geometric network embedded in a three-dimensional space. A network-specific metric, rather than the Euclidean metric, is usually used in all these applications, making the analyses of network data challenging. We consider network-based point processes, and our task is to estimate the intensity (or density) of the process which allows us to detect high- and low-intensity regions of the underlying stochastic processes. Available routines that tackle this problem are commonly based on kernel smoothing methods. This paper uses penalized spline smoothing and extends this toward smooth intensity estimation on geometric networks. Furthermore, our approach easily allows incorporating covariates, enabling us to respect the network geometry in a regression model framework. Several data examples and a simulation study show that penalized spline-based intensity estimation on geometric networks is a numerically stable and efficient tool. Furthermore, it also allows estimating linear and smooth covariate effects, distinguishing our approach from already existing methodologies.

MSC:

62G08 Nonparametric regression and quantile regression
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
62G07 Density estimation
62J12 Generalized linear models (logistic models)
62-08 Computational methods for problems pertaining to statistics

Software:

R; spatstat
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ANG, Q. W., BADDELEY, A. and NAIR, G. (2012). Geometrically corrected second order analysis of events on a linear network, with applications to ecology and criminology. Scand. J. Stat. 39 591-617. · Zbl 1319.62197 · doi:10.1111/j.1467-9469.2011.00752.x
[2] BADDELEY, A., RUBAK, E. and TURNER, R. (2015). Spatial Point Patterns: Methodology and Applications with R. Chapman and Hall/CRC.
[3] BADDELEY, A., NAIR, G., RAKSHIT, S., MCSWIGGAN, G. and DAVIES, T. M. (2021). Analysing point patterns on networks—a review. Spat. Stat. 42 Paper No. 100435, 35. · doi:10.1016/j.spasta.2020.100435
[4] BARR, C. D. and SCHOENBERG, F. P. (2010). On the Voronoi estimator for the intensity of an inhomogeneous planar Poisson process. Biometrika 97 977-984. · Zbl 1204.62147 · doi:10.1093/biomet/asq047
[5] BASSETT, R. and SHARPNACK, J. (2019). Fused density estimation: Theory and methods. J. R. Stat. Soc. Ser. B. Stat. Methodol. 81 839-860. · Zbl 1429.62121
[6] BEER, G. (2013). The structure of extended real-valued metric spaces. Set-Valued Var. Anal. 21 591-602. · Zbl 1287.54025 · doi:10.1007/s11228-013-0255-2
[7] BORRUSO, G. (2008). Network density estimation: A GIS approach for analysing point patterns in a network space. Trans. GIS 12 377-402.
[8] CHAN, T. M. (2012). All-pairs shortest paths for unweighted undirected graphs in \[o(mn)\] time. ACM Trans. Algorithms 8 Art. 34, 17. · Zbl 1295.05224 · doi:10.1145/2344422.2344424
[9] CURRIE, I. D., DURBAN, M. and EILERS, P. H. C. (2006). Generalized linear array models with applications to multidimensional smoothing. J. R. Stat. Soc. Ser. B. Stat. Methodol. 68 259-280. · Zbl 1110.62090 · doi:10.1111/j.1467-9868.2006.00543.x
[10] DE BOOR, C. (1972). On calculating with \(B\)-splines. J. Approx. Theory 6 50-62. · Zbl 0239.41006 · doi:10.1016/0021-9045(72)90080-9
[11] DIGGLE, P. (1985). A kernel method for smoothing point process data. J. R. Stat. Soc. Ser. C. Appl. Stat. 34 138-147. · Zbl 0584.62140
[12] EILERS, P. H. C. and MARX, B. D. (1996). Flexible smoothing with \(B\)-splines and penalties. Statist. Sci. 11 89-121. With comments and a rejoinder by the authors. · Zbl 0955.62562 · doi:10.1214/ss/1038425655
[13] EILERS, P. H. C., MARX, B. D. and DURBÁN, M. (2015). Twenty years of P-splines. SORT 39 149-186. · Zbl 1339.41010
[14] FAHRMEIR, L., KNEIB, T., LANG, S. and MARX, B. (2013). Regression: Models, Methods and Applications. Springer, Heidelberg. · Zbl 1276.62046 · doi:10.1007/978-3-642-34333-9
[15] GOLDENBERG, A., ZHENG, A. X., FIENBERG, S. E., AIROLDI, E. M. et al. (2010). A survey of statistical network models. Found. Trends Mach. Learn. 2 129-233. · Zbl 1184.68030
[16] HEUSER, H. (2006). Lehrbuch der Analysis 1, 2. Teubner, Stuttgart.
[17] KAUERMANN, G. (2002). On a small sample adjustment for the profile score function in semiparametric smoothing models. J. Multivariate Anal. 82 471-485. · Zbl 1098.62521 · doi:10.1006/jmva.2001.2032
[18] KAUERMANN, G. and OPSOMER, J. D. (2011). Data-driven selection of the spline dimension in penalized spline regression. Biometrika 98 225-230. · Zbl 1215.62041 · doi:10.1093/biomet/asq081
[19] Kolaczyk, E. D. and Csárdi, G. (2014). Statistical Analysis of Network Data with R. Use R! Springer, New York. · Zbl 1290.62002 · doi:10.1007/978-1-4939-0983-4
[20] MCSWIGGAN, G. (2019). Spatial point process methods for linear networks with applications to road accident analysis. Doctoral Thesis, Univ. Western Australia.
[21] McSwiggan, G., Baddeley, A. and Nair, G. (2017). Kernel density estimation on a linear network. Scand. J. Stat. 44 324-345. · Zbl 1422.62091 · doi:10.1111/sjos.12255
[22] MORADI, M. M., RODRÍGUEZ-CORTÉS, F. J. and MATEU, J. (2018). On kernel-based intensity estimation of spatial point patterns on linear networks. J. Comput. Graph. Statist. 27 302-311. · Zbl 07498948 · doi:10.1080/10618600.2017.1360782
[23] MORADI, M. M., CRONIE, O., RUBAK, E., LACHIEZE-REY, R., MATEU, J. and BADDELEY, A. (2019). Resample-smoothing of Voronoi intensity estimators. Stat. Comput. 29 995-1010. · Zbl 1430.62073 · doi:10.1007/s11222-018-09850-0
[24] O’DONNELL, D., RUSHWORTH, A., BOWMAN, A. W., SCOTT, E. M. and HALLARD, M. (2014). Flexible regression models over river networks. J. R. Stat. Soc. Ser. C. Appl. Stat. 63 47-63. · doi:10.1111/rssc.12024
[25] OKABE, A., SATOH, T. and SUGIHARA, K. (2009). A kernel density estimation method for networks, its computational method and a GIS-based tool. Int. J. Geogr. Inf. Sci. 23 7-32.
[26] OKABE, A. and YAMADA, I. (2001). The K-function method on a network and its computational implementation. Geogr. Anal. 33 271-290.
[27] OKABE, A., YOMONO, H. and KITAMURA, M. (1995). Statistical analysis of the distribution of points on a network. Geogr. Anal. 27 152-175.
[28] R CORE TEAM (2013). \(R\): A Language and Environment for Statistical Computing.
[29] RAKSHIT, S., DAVIES, T., MORADI, M. M., MCSWIGGAN, G., NAIR, G., MATEU, J. and BADDELEY, A. (2019). Fast kernel smoothing of point patterns on a large network using two-dimensional convolution. Int. Stat. Rev. 87 531-556. · Zbl 07763604 · doi:10.1111/insr.12327
[30] RASMUSSEN, J. G. and CHRISTENSEN, H. S. (2021). Point processes on directed linear networks. Methodol. Comput. Appl. Probab. 23 647-667. · Zbl 1480.60131 · doi:10.1007/s11009-020-09777-y
[31] Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics 12. Cambridge Univ. Press, Cambridge. · Zbl 1038.62042 · doi:10.1017/CBO9780511755453
[32] RUPPERT, D., WAND, M. P. and CARROLL, R. J. (2009). Semiparametric regression during 2003-2007. Electron. J. Stat. 3 1193-1256. · Zbl 1326.62094 · doi:10.1214/09-EJS525
[33] RUSHWORTH, A. M., PETERSON, E. E., VER HOEF, J. M. and BOWMAN, A. W. (2015). Validation and comparison of geostatistical and spline models for spatial stream networks. Environmetrics 26 327-338. · Zbl 1525.62210 · doi:10.1002/env.2340
[34] SCHELLHASE, C. and KAUERMANN, G. (2012). Density estimation and comparison with a penalized mixture approach. Comput. Statist. 27 757-777. · Zbl 1304.65065 · doi:10.1007/s00180-011-0289-6
[35] SCHNEBLE, M. and KAUERMANN, G. (2022). Supplement to “Intensity estimation on geometric networks with penalized splines.” https://doi.org/10.1214/21-AOAS1522SUPP
[36] SCOTT, D. W. (2015). Multivariate Density Estimation: Theory, Practice, and Visualization, 2nd ed. Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ. · Zbl 1311.62004
[37] SNIJDERS, T. A. B. (1996). Stochastic actor-oriented models for network change. J. Math. Sociol. 21 149-172. · Zbl 0883.92038
[38] SPOONER, P. G., LUNT, I. D., OKABE, A. and SHIODE, S. (2004). Spatial analysis of roadside Acacia populations on a road network using the network K-function. Landsc. Ecol. 19 491-499.
[39] Wood, S. N. (2017). Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC. · Zbl 1368.62004
[40] WOOD, S. N. and FASIOLO, M. (2017). A generalized Fellner-Schall method for smoothing parameter optimization with application to Tweedie location, scale and shape models. Biometrics 73 1071-1081. · Zbl 1405.62216 · doi:10.1111/biom.12666
[41] XIE, Z. and YAN, J. (2008). Kernel density estimation of traffic accidents in a network space. Comput. Environ. Urban Syst. 32 396-406
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.