×

A mathematical model of salivary gland duct cells. (English) Zbl 1497.92083

Summary: Saliva is produced in two stages in the salivary glands: the secretion of primary saliva by the acinus and the modification of saliva composition to final saliva by the intercalated and striated ducts. In order to understand the saliva modification process, we develop a mathematical model for the salivary gland duct. The model utilises the realistic 3D structure of the duct reconstructed from an image stack of gland tissue. Immunostaining results show that TMEM16A and aquaporin are expressed in the intercalated duct cells and that ENaC is not. Based on this, the model predicts that the intercalated duct does not absorb \(Na^+\) and \(Cl^-\) like the striated duct but secretes a small amount of water instead. The input to the duct model is the time-dependent primary saliva generated by an acinar cell model. Our duct model produces final saliva output that agrees with the experimental measurements at various stimulation levels. It also shows realistic biological features such as duct cell volume, cellular concentrations and membrane potentials. Simplification of the model by omission of all detailed 3D structures of the duct makes a negligible difference to the final saliva output. This shows that saliva production is not sensitive to structural variation of the duct.

MSC:

92C37 Cell biology
92-10 Mathematical modeling or simulation for problems pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amano, O.; Mizobe, K.; Bando, Y., Anatomy and histology of rodent and human major salivary glands, Acta Histochem Cytochem, 45, 5, 241-250 (2012) · doi:10.1267/ahc.12013
[2] Catalán, MA; Nakamoto, T.; Gonzalez- Begne, M., Cftr and ENaC ion channels mediate NaCl absorption in the mouse submandibular gland, J Physiol, 588, 4, 713-724 (2010) · doi:10.1113/jphysiol.2009.183541
[3] Catalán, MA; Peña-Munzenmayer, G.; Melvin, JE, \(Ca^{\rm 2+\rm -dependent K^{\rm +}}\) channels in exocrine salivary glands, Cell Calcium, 55, 6, 362-368 (2014) · doi:10.1016/j.ceca.2014.01.005
[4] Crampin, EJ; Smith, NP, A dynamic model of excitation-contraction coupling during acidosis in cardiac ventricular myocytes, Biophys J, 90, 9, 3074-3090 (2006) · doi:10.1529/biophysj.105.070557
[5] Daniels, TE; Wu, AJ, Xerostomia-clinical evaluation and treatment in general practice, J Calif Dent Assoc, 28, 12, 933-941 (2000)
[6] Delporte, C.; Bryla, A.; Perret, J., Aquaporins in salivary glands: from basic research to clinical applications, Int J Mol Sci, 17, 2, 166 (2016) · doi:10.3390/ijms17020166
[7] Fong, S.; Chiorini, JA; Sneyd, J., Computational modeling of epithelial fluid and ion transport in the parotid duct after transfection of human aquaporin-1, Am J Physiol Gastrointest Liver Physiol, 312, 2, G153-G163 (2017) · doi:10.1152/ajpgi.00374.2016
[8] Gao, R.; Yan, X.; Zheng, C., AAV2-mediated transfer of the human aquaporin-1 cDNA restores fluid secretion from irradiated miniature pig parotid glands, Gene Ther, 18, 1, 38-42 (2011) · doi:10.1038/gt.2010.128
[9] He, X.; Tse, CM; Donowitz, M., Polarized distribution of key membrane transport proteins in the rat submandibular gland, Pflügers Arch, 433, 3, 260-268 (1996) · doi:10.1007/s004240050276
[10] Jung, J.; Nam, JH; Park, HW, Dynamic modulation of ANO1/TMEM16A HCO3(-) permeability by Ca2+/calmodulin, Proc Natl Acad Sci USA, 110, 1, 360-365 (2013) · doi:10.1073/pnas.1211594110
[11] Kivelä, J.; Parkkila, S.; Parkkila, AK, Salivary carbonic anhydrase isoenzyme VI, J Physiol, 520, Pt 2, 315-320 (1999) · doi:10.1111/j.1469-7793.1999.t01-1-00315.x
[12] Ko, SBH; Shcheynikov, N.; Choi, JY, A molecular mechanism for aberrant CFTR-dependent HCO(3)(-) transport in cystic fibrosis, EMBO J, 21, 21, 5662-5672 (2002) · doi:10.1093/emboj/cdf580
[13] Lee, MG; Choi, JY; Luo, X., Cystic fibrosis transmembrane conductance regulator regulates luminal \(Cl^-/HCO_{\rm 3}^-\) exchange in mouse submandibular and pancreatic ducts, J Biol Chem, 274, 21, 14670-14677 (1999) · doi:10.1074/jbc.274.21.14670
[14] Lee, MG; Ohana, E.; Park, HW, Molecular mechanism of pancreatic and salivary gland fluid and HCO3-secretion, Physiol Rev, 92, 1, 39-74 (2012) · doi:10.1152/physrev.00011.2011
[15] Li, J.; Koo, NY; Cho, IH, Expression of the \(Na^{\rm +}-HCO_{\rm 3}^-\) cotransporter and its role in \(pH_{\rm i}\) regulation in guinea pig salivary glands, Am J Physiol Gastrointest Liver Physiol, 291, 6, G1031-G1040 (2006) · doi:10.1152/ajpgi.00483.2005
[16] Liu, X.; Singh, BB; Ambudkar, IS, ATP-dependent activation of KCa and ROMK-type KATP channels in human submandibular gland ductal cells, J Biol Chem, 274, 35, 25121-25129 (1999) · doi:10.1074/jbc.274.35.25121
[17] Lodish, HF, Molecular cell biology (2016), New York: Macmillan Learning, New York
[18] Luo, X.; Choi, JY; Ko, SBH, \(HCO_{\rm 3}^-\) salvage mechanisms in the submandibular gland acinar and duct cells, J Biol Chem, 276, 13, 9808-9816 (2001) · doi:10.1074/jbc.M008548200
[19] Man, YG; Ball, WD; Marchetti, L., Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats, Anat Rec, 263, 2, 202-214 (2001) · doi:10.1002/ar.1098
[20] Mangos, J.; McSherry, N.; Arvanitakis, S., Autonomic regulation of secretion and transductal fluxes of ions in the rat parotid, Am J Physiol Leg Content, 225, 3, 683-688 (1973) · doi:10.1152/ajplegacy.1973.225.3.683
[21] Mangos, J.; McSherry, N.; Irwin, K., Handling of water and electrolytes by rabbit parotid and submaxillary glands, Am J Physiol Leg Content, 225, 2, 450-455 (1973) · doi:10.1152/ajplegacy.1973.225.2.450
[22] Mangos, J.; McSherry, N.; Nousia-Arvanitakis, S., Secretion and transductal fluxes of ions in exocrine glands of the mouse, Am J Physiol Leg Content, 225, 1, 18-24 (1973) · doi:10.1152/ajplegacy.1973.225.1.18
[23] Mangos, JA; Braun, G.; Hamann, KF, Micropuncture study of sodium and potassium excretion in the rat parotid saliva, Pflüger’s Arch Gesamte Physiol Menschen Tiere, 291, 1, 99-106 (1966) · doi:10.1007/BF00362655
[24] Martin, CJ; Frömter, E.; Gebler, B., The effects of carbachol on water and electrolyte fluxes and transepithelial electrical potential differences of the rabbit submaxillary main duct perfusedin vitro, Pflügers Arch, 341, 2, 131-142 (1973) · doi:10.1007/BF00587320
[25] Matsuzaki, T.; Susa, T.; Shimizu, K., Function of the membrane water channel aquaporin-5 in the salivary gland, Acta Histochem Cytochem, 45, 5, 251-259 (2012) · doi:10.1267/ahc.12018
[26] Melvin, JE; Yule, D.; Shuttleworth, T., Regulation of fluid and electrolyte secretion in salivary gland acinar cells, Annu Rev Physiol, 67, 1, 445-469 (2005) · doi:10.1146/annurev.physiol.67.041703.084745
[27] Nakamoto, T.; Romanenko, VG; Takahashi, A., Apical maxi-K (KCa1.1) channels mediate K+ secretion by the mouse submandibular exocrine gland, Am J Physiol Cell Physiol, 294, 3, C810-C819 (2008) · doi:10.1152/ajpcell.00511.2007
[28] Nauntofte, B., Regulation of electrolyte and fluid secretion in salivary acinar cells, Am J Physiol Gastrointest Liver Physiol, 263, 6, G823-G837 (1992) · doi:10.1152/ajpgi.1992.263.6.G823
[29] Ohana, E., Transepithelial ion transport across duct cells of the salivary gland, Oral Dis, 21, 7, 826-835 (2015) · doi:10.1111/odi.12201
[30] Palk, L.; Sneyd, J.; Shuttleworth, TJ, A dynamic model of saliva secretion, J Theor Biol, 266, 4, 625-640 (2010) · Zbl 1407.92041 · doi:10.1016/j.jtbi.2010.06.027
[31] Park, K.; Olschowka, JA; Richardson, LA, Expression of multiple \(Na^{\rm +}/H^{\rm +}\) exchanger isoforms in rat parotid acinar and ductal cells, Am J Physiol Gastrointest Liver Physiol, 276, 2, G470-G478 (1999) · doi:10.1152/ajpgi.1999.276.2.G470
[32] Patterson, K.; Catalán, MA; Melvin, JE, A quantitative analysis of electrolyte exchange in the salivary duct, Am J Physiol Gastrointest Liver Physiol, 303, 10, G1153-G1163 (2012) · doi:10.1152/ajpgi.00364.2011
[33] Poulsen, JH; Fischer, H.; Illek, B., Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator, Proc Natl Acad Sci, 91, 12, 5340-5344 (1994) · doi:10.1073/pnas.91.12.5340
[34] Romero, MF; Boron, WF, Electrogenic Na+/HCO-3 cotransporters: cloning and physiology, Annu Rev Physiol, 61, 1, 699-723 (1999) · doi:10.1146/annurev.physiol.61.1.699
[35] Schneyer, L., Amiloride inhibition of ion transport in perfused excretory duct of rat submaxillary gland, Am J Physiol Leg Content, 219, 4, 1050-1055 (1970) · doi:10.1152/ajplegacy.1970.219.4.1050
[36] Shcheynikov, N.; Yang, D.; Wang, Y., The Slc26a4 transporter functions as an electroneutral \(Cl^-/I^-/HCO_3^-\) exchanger: role of Slc26a4 and Slc26a6 in \(I^-\) and \(HCO_{\rm 3}^-\) secretion and in regulation of CFTR in the parotid duct, J Physiol, 586, 16, 3813-3824 (2008) · doi:10.1113/jphysiol.2008.154468
[37] Smith, NP; Crampin, EJ, Development of models of active ion transport for whole-cell modelling: cardiac sodium-potassium pump as a case study, Prog Biophys Mol Biol, 85, 2, 387-405 (2004) · doi:10.1016/j.pbiomolbio.2004.01.010
[38] Smith, ZD; Caplan, MJ; Forbush, B., Monoclonal antibody localization of \(Na^{\rm +}-K^{\rm +}\)-ATPase in the exocrine pancreas and parotid of the dog, Am J Physiol Gastrointest Liver Physiol, 253, 2, G99-G109 (1987) · doi:10.1152/ajpgi.1987.253.2.G99
[39] Takano, T.; Wahl, AM; Huang, KT, Highly localized intracellular Ca2+ signals promote optimal salivary gland fluid secretion, eLife, 10, e66170 (2021) · doi:10.7554/eLife.66170
[40] Tamarin, A.; Sreebny, LM, The rat submaxillary salivary gland. A correlative study by light and electron microscopy, J Morphol, 117, 3, 295-352 (1965) · doi:10.1002/jmor.1051170303
[41] Varga, G., Physiology of the salivary glands, Surgery (Oxford), 30, 11, 578-583 (2012) · doi:10.1016/j.mpsur.2012.09.010
[42] Vera-Sigüenza, E.; Catalán, MA; Peña-Münzenmayer, G., A mathematical model supports a key role for Ae4 (Slc4a9) in salivary gland secretion, Bull Math Biol, 80, 2, 255-282 (2018) · Zbl 1384.92022 · doi:10.1007/s11538-017-0370-6
[43] Vera-Sigüenza, E.; Pages, N.; Rugis, J., A mathematical model of fluid transport in an accurate reconstruction of parotid acinar cells, Bull Math Biol, 81, 3, 699-721 (2019) · Zbl 1415.92070 · doi:10.1007/s11538-018-0534-z
[44] Vera-Sigüenza, E.; Pages, N.; Rugis, J., A multicellular model of primary saliva secretion in the parotid gland, Bull Math Biol, 82, 3, 38 (2020) · Zbl 1433.92010 · doi:10.1007/s11538-020-00712-3
[45] Vivino, FB; Bunya, VY; Massaro-Giordano, G., Sjogren’s syndrome: an update on disease pathogenesis, clinical manifestations and treatment, Clin Immunol, 203, 81-121 (2019) · doi:10.1016/j.clim.2019.04.009
[46] Winston, DC; Hennigar, RA; Spicer, SS, Immunohistochemical localization of Na+, K+-ATPase in rodent and human salivary and lacrimal glands, J Histochem Cytochem, 36, 9, 1139-1145 (1988) · doi:10.1177/36.9.2841372
[47] Young, JA; Martin, CJ; Weber, FD, The effect of a sympatho- and a parasympathomimetic drug on the electrolyte concentrations of primary and final saliva of the rat submaxillary gland, Pflügers Arch, 327, 4, 285-302 (1971) · doi:10.1007/BF00588449
[48] Zhao, H.; Xu, X.; Diaz, J., \(Na^{\rm +}, K^{\rm +}\), and \(H^{\rm +}/HCO_{\rm 3}^-\) transport in submandibular salivary ducts: membrane localization of transporters, J Biol Chem, 270, 33, 19599-19605 (1995) · doi:10.1074/jbc.270.33.19599
[49] Zhou, M.; He, HJ; Hirano, M., Localization of ATP-sensitive K+ channel subunits in rat submandibular gland, J Histochem Cytochem, 58, 6, 499-507 (2010) · doi:10.1369/jhc.2009.955047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.