×

Fixed-time leader-following formation control of fully-actuated underwater vehicles without velocity measurements. (English) Zbl 1495.93005

Summary: This paper is concerned with formation control of fully-actuated underwater vehicles (FUVs), focusing on improving system convergence speed and overcoming velocity measurement limitation. By employing the fixed-time control theory and command filtering technique, a full state feedback formation algorithm is proposed, which makes the follower track the leader in a given time with all signals in the system globally practically stabilized in fixed time. To avoid degraded control performance due to inaccurate velocity measurement, a fixed-time convergent observer is designed to estimate the velocity of FUVs. Then the authors give an observer-based fixed-time control method, with which acceptable formation performance can be achieved in fixed time without velocity measurement. The effectiveness and performance of the proposed method are demonstrated by numerical simulations.

MSC:

93A13 Hierarchical systems
93C85 Automated systems (robots, etc.) in control theory
93B52 Feedback control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cui, R.; Yang, C.; Li, Y., Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47, 6, 1019-1029 (2017) · doi:10.1109/TSMC.2016.2645699
[2] Peng, Z.; Wang, J., Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48, 4, 535-544 (2018) · doi:10.1109/TSMC.2017.2697447
[3] Li, J.; Du, J.; Sun, Y., Robust adaptive trajectory tracking control of underactuated autonomous underwater vehicles with prescribed performance, International Journal of Robust and Nonlinear Control, 29, 14, 4629-4643 (2019) · Zbl 1426.93059 · doi:10.1002/rnc.4659
[4] Gao, Z.; Guo, G., Fixed-time sliding mode formation control of AUVs based on a disturbance observer, IEEE/CAA Journal of Automatica Since, 7, 2, 539-545 (2020) · doi:10.1109/JAS.2020.1003057
[5] Liu, H.; Lyu, Y.; Lewis, F., Robust time-varying formation control for multiple underwater vehicles subject to nonlinearities and uncertainties, International Journal of Robust and Nonlinear Control, 29, 9, 2712-2724 (2019) · Zbl 1418.93073 · doi:10.1002/rnc.4517
[6] Shojaei, K., Three-dimensional tracking control of autonomous underwater vehicles with limited torque and without velocity sensors, Robotica, 36, 3, 374-394 (2018) · doi:10.1017/S0263574717000455
[7] Shojaei, K., Three-dimensional neural network tracking control of a moving target by underactuated autonomous underwater vehicles, Neural Computing and Applications, 31, 2, 509-521 (2019) · doi:10.1007/s00521-017-3085-6
[8] Li, J.; Du, J.; Chang, W., Robust time-varying formation control for underactuated autonomous underwater vehicles with disturbances under input saturation, Ocean Engineering, 179, 180-188 (2019) · doi:10.1016/j.oceaneng.2019.03.017
[9] Cui, R.; Ge, S. S.; How, B., Leader-follower formation control of underactuated autonomous underwater vehicles, Ocean Engineering, 37, 17, 1491-1502 (2010) · doi:10.1016/j.oceaneng.2010.07.006
[10] Gao, Z.; Guo, G., Adaptive formation control of autonomous underwater vehicles with model uncertainties, International Journal of Adaptive Control and Signal Processing, 32, 7, 1067-1080 (2018) · Zbl 1406.93161 · doi:10.1002/acs.2886
[11] Park, B. S., Adaptive formation control of underactuated autonomous underwater vehicles, Ocean Engineering, 96, 1-7 (2015) · doi:10.1016/j.oceaneng.2014.12.016
[12] Shojaei, K., Neural network formation control of underactuated autonomous underwater vehicles with saturating actuators, Neurocomputing, 194, 372-384 (2016) · doi:10.1016/j.neucom.2016.02.041
[13] Jin, X., Fault tolerant finite-time leader-follower formation control for autonomous surface vessels with LOS range and angle constraints, Automatica, 68, 228-236 (2016) · Zbl 1334.93007 · doi:10.1016/j.automatica.2016.01.064
[14] Du, H.; Zhu, W.; Wen, G., Finite-time formation control for a group of quadrotor aircraft, Aerospace Science and Technology, 69, 609-616 (2017) · doi:10.1016/j.ast.2017.07.012
[15] Li, S.; Wang, X.; Zhang, L., Finite-time output feedback tracking control for autonomous underwater vehicles, IEEE Journal of Oceanic Engineering, 40, 3, 727-751 (2015) · doi:10.1109/JOE.2014.2330958
[16] Defoort, M.; Polyakov, A.; Demesure, G., Leader-follower fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics, IET Control Theory and Applications, 9, 14, 2165-2170 (2015) · doi:10.1049/iet-cta.2014.1301
[17] Polyakov, A., Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Transactions on Automatic Control, 57, 8, 2106-2110 (2012) · Zbl 1369.93128 · doi:10.1109/TAC.2011.2179869
[18] Tian, B.; Zuo, Z.; Yan, X., A fixed-time output feedback control scheme for double integrator systems, Automatica, 80, 17-24 (2017) · Zbl 1370.93202 · doi:10.1016/j.automatica.2017.01.007
[19] Zuo, Z., Nonsingular fixed-time consensus tracking for second-order multi-agent networks, Automatica, 54, 305-309 (2015) · Zbl 1318.93010 · doi:10.1016/j.automatica.2015.01.021
[20] Zhang, L. J.; Qi, X.; Pang, Y. J., Adaptive output feedback control based on DRFNN for AUV, Ocean Engineering, 36, 9-10, 716-722 (2009) · doi:10.1016/j.oceaneng.2009.03.011
[21] Gao, Z.; Guo, G., Velocity free leader-follower formation control for autonomous underwater vehicles with line-of-sight range and angle constraints, Information Sciences, 486, 359-378 (2019) · Zbl 1454.93005 · doi:10.1016/j.ins.2019.02.050
[22] Jiang, B.; Hu, Q.; Friswell, M. I., Fixed-time attitude control for rigid spacecraft with actuator saturation and faults, IEEE Transactions on Control Systems Technology, 24, 5, 1892-1898 (2016) · doi:10.1109/TCST.2016.2519838
[23] Zuo, Z.; Tie, L., Distributed robust finite-time nonlinear consensus protocols for multi-agent systems, International Journal of Systems Science, 47, 6, 1366-1375 (2016) · Zbl 1333.93027 · doi:10.1080/00207721.2014.925608
[24] Farrell, J. A.; Polycarpou, M.; Sharma, M., Command filtered backstepping, IEEE Transactions on Automatic Control, 54, 6, 1391-1395 (2009) · Zbl 1367.93382 · doi:10.1109/TAC.2009.2015562
[25] Hu, Z.; Ma, C.; Zhang, L., Formation control of impulsive networked autonomous underwater vehicles under fixed and switching topologies, Neurocomputing, 147, 291-298 (2015) · doi:10.1016/j.neucom.2014.06.060
[26] Wondergem, M.; Lefeber, E.; Pettersen, K. Y., Output feedback tracking of ships, IEEE Transactions on Control Systems Technology, 19, 2, 442-448 (2011) · doi:10.1109/TCST.2010.2045654
[27] Bliek, L.; Verstraete, H. R.; Verhaegen, M., Online optimization with costly and noisy measurements using random Fourier expansions, IEEE Transactions on Neural Networks and Learning Systems, 29, 1, 167-182 (2018) · doi:10.1109/TNNLS.2016.2615134
[28] Gandomi, A. H.; Yang, X. S.; Alavi, A. H., Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems, Engineering with Computers, 29, 1, 17-35 (2013) · doi:10.1007/s00366-011-0241-y
[29] Sedghi, F.; Arefi, M. M.; Abooee, A., Adaptive robust finite-time nonlinear control of a typical autonomous underwater vehicle with saturated inputs and uncertainties, IEEE/ASME Transactions on Mechatronics, 26, 5, 2517-2527 (2021) · doi:10.1109/TMECH.2020.3041613
[30] Gao, Z.; Guo, G., Command filtered path tracking control of saturated ASVs based on time-varying disturbance observer, Asian Journal of Control, 22, 3, 1197-1210 (2020) · doi:10.1002/asjc.1990
[31] Yu, Y.; Guo, C.; Li, T., Finite-time los path following of unmanned surface vessels with time-varying sideslip angles and input saturation, IEEE/ASME Transactions on Mechatronics, 27, 1, 463-474 (2022) · doi:10.1109/TMECH.2021.3066211
[32] Li, S.; Wang, X., Finite-time consensus and collision avoidance control algorithms for multiple FUVs, Automatica, 49, 3359-3367 (2013) · Zbl 1315.93004 · doi:10.1016/j.automatica.2013.08.003
[33] Fossen T I and T Perez T, Marine systems simulator (MSS). URL: https://github.com/cyber-galactic/MSS, 2004.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.