×

On the nonnegativity of the Dirichlet energy of a weighted graph. (English) Zbl 1507.53097

The author studies the problem of understanding when a weighted graph has a nonnegative Dirichlet energy. This is done in the geometric context of Hermitian manifolds.

MSC:

53E30 Flows related to complex manifolds (e.g., Kähler-Ricci flows, Chern-Ricci flows)
05C22 Signed and weighted graphs
53B35 Local differential geometry of Hermitian and Kählerian structures
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bishop, R. L. and Goldberg, S. I., ‘On the second cohomology group of a Kaehler manifold of positive curvature’, Proc. Amer. Math. Soc.16 (1965), 119-122. · Zbl 0125.39403
[2] Broder, K., ‘The Schwarz lemma in Kähler and non-Kähler geometry’, Preprint, 2021, arxiv:2109.06331.
[3] Broder, K., ‘An eigenvalue characterisation of the dual EDM cone’, Bull. Aust. Math. Soc. to appear, doi: doi:10.1017/S0004972721000915. · Zbl 1500.15006
[4] Chau, A. and Tam, L.-F., ‘On quadratic orthogonal bisectional curvature’, J. Differential Geom.92(2) (2012), 187-200. · Zbl 1276.53075
[5] Dattorro, J., ‘Equality relating Euclidean distance cone to positive semidefinite cone’, Linear Algebra Appl.428(11-12) (2008), 2597-2600. · Zbl 1142.15014
[6] Dattorro, J., Convex Optimization & Euclidean Distance Geometry \(2\varepsilon \) (MeBoo, Palo Alto, CA, 2019), available at the author’s webpage at https://convexoptimization.com/TOOLS/0976401304.pdf.
[7] Demailly, J.-P., Peternell, Y. and Schneider, M., ‘Compact complex manifolds with numerically effective tangent bundles’, J. Algebraic Geom.3 (1994), 295-345. · Zbl 0827.14027
[8] Gu, H. and Zhang, Z., ‘An extension of Mok’s theorem on the generalized Frankel conjecture’, Sci. China Math.53 (2010), 1-12. · Zbl 1204.53058
[9] Li, Q., Wu, D. and Zheng, F., ‘An example of compact Kähler manifold with non-negative quadratic bisectional curvature’, Proc. Amer. Math. Soc.141(6) (2013), 2117-2126. · Zbl 1276.32018
[10] Mok, N., ‘The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature’, J. Differential Geom.27 (1988), 179-214. · Zbl 0642.53071
[11] Mori, S., ‘Projective manifolds with ample tangent bundles’, Ann. of Math. (2)110(3) (1979), 593-606. · Zbl 0423.14006
[12] Petersen, P., Riemannian Geometry, 3rd edn, Graduate Texts in Mathematics, 171 (Springer, Cham, 2016). · Zbl 1417.53001
[13] Petersen, P. and Wink, M., ‘New curvature conditions for the Bochner technique’, Invent. Math.224 (2021), 33-54. · Zbl 1462.53026
[14] Petersen, P. and Wink, M., ‘Vanishing and estimation results for Hodge numbers’, J. reine angew. Math.2021 (2021), 197-219. · Zbl 1484.53106
[15] Schoenberg, I. J., ‘Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe déspace distanciés vectoriellement applicable sur l’espace de Hilbert”’, Ann. of Math. (2)36(3) (1935), 724-732. · JFM 61.0435.04
[16] Siu, Y.-T. and Yau, S.-T., ‘Compact Kähler manifolds of positive bisectional curvature’, Invent. Math.59(2) (1980), 189-204. · Zbl 0442.53056
[17] Wu, D., Yau, S.-T. and Zheng, F., ‘A degenerate Monge-Ampère equation and the boundary classes of Kähler cones’, Math. Res. Lett.16(2) (2009), 365-374. · Zbl 1183.32018
[18] Yang, X. and Zheng, F., ‘On real bisectional curvature for Hermitian manifolds’, Trans. Amer. Math. Soc.371(4) (2019), 2703-2718. · Zbl 1417.32027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.