×

A robust meta-heuristic adaptive Bi-CGSTAB algorithm to online estimation of a three DoF state-space model in the presence of disturbance and uncertainty. (English) Zbl 1498.93715

Summary: Most control systems require a fairly accurate model of dynamic system to design or implement a controller. When system dynamics change, the dynamic model must undergo online or offline re-estimation. The online model estimation algorithms in the time domain, especially for large models in presence of sensor noise, model uncertainty and external disturbance are almost inaccurate and unstable. In this paper, based on the dynamic model characteristics a novel online robust meta-heuristic adaptive bi-conjugate gradient stabilized (Bi-CGSTAB) algorithm is proposed to estimate the model parameters and attitude simultaneously. First, the model is estimated iteratively using the output of attitude estimation from the Kalman filter algorithm, and the attitude is estimated by the output of estimated model from the least square method. The estimation method focuses on the solving algorithm of the matrix equations of the model estimation. The online robust meta-heuristic adaptive Bi-CGSTAB method uses the information of previous iteration in the current iteration to set the solving-steps toward the local optimums. This method leads to a broader and more intelligent search in the Krylov subspace of answers. The numerical results show a higher performance, robustness and more accurate model estimation than the other stated methods in the paper.

MSC:

93E10 Estimation and detection in stochastic control theory
93E11 Filtering in stochastic control theory
93B35 Sensitivity (robustness)
93C40 Adaptive control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abrashov, S.; Malti, R.; Mathieu, M.; Moreau, X.; Guillemard, F., Optimal input design for continuous-time system identification: application to fractional systems, IFAC-PapersOnLine, 48, 28, 1307-1312 (2015) · doi:10.1016/j.ifacol.2015.12.312
[2] Alimo, R., Jeong, D., & Man, K (2020). Explainable non-cooperative spacecraft pose estimation using convolutional neural networks. In AIAA Scitech 2020 Forum (p. 2096). AIAA.
[3] Chen, J.; Masdemont, J. J.; Gómez, G.; Yuan, J., Jet transport-based nonlinear state and parameter estimation for geostationary spacecraft, Acta Astronautica, 164, 6, 321-333 (2019) · doi:10.1016/j.actaastro.2019.08.009
[4] Chen, J.; McInnes, L. C.; Zhang, H., Analysis and practical use of flexible BiCGStab, Journal of Scientific Computing, 68, 2, 803-825 (2016) · Zbl 1372.65097 · doi:10.1007/s10915-015-0159-4
[5] Chronopoulos, A. T., S-step iterative methods for (non)symmetric (in)definite linear systems, SIAM Journal on Numerical Analysis, 28, 6, 1776-1789 (1991) · Zbl 0741.65026 · doi:10.1137/0728088
[6] Chronopoulos, A. T.; Kincaid, D., On the Odir iterative method for non-symmetric indefinite linear systems, Numerical Linear Algebra with Applications, 8, 2, 71-82 (2001) · Zbl 1051.65032 · doi:10.1002/(ISSN)1099-1506
[7] Chronopoulos, A. T.; Kucherov, A. B., Block s-step Krylov iterative methods, Numerical Linear Algebra with Applications, 17, 1, 3-15 (2010) · Zbl 1240.65107 · doi:10.1002/nla.v17:1
[8] Chronopoulos, A. T.; Swanson, C. D., Parallel iterative S-step methods for unsymmetric linear systems, Parallel Computing, 22, 5, 623-641 (1996) · Zbl 0873.65019 · doi:10.1016/0167-8191(96)00022-1
[9] Ciucci, F., Revisiting parameter identification in electrochemical impedance spectroscopy: Weighted least squares and optimal experimental design, Electrochimica Acta, 87, 532-545 (2013) · doi:10.1016/j.electacta.2012.09.073
[10] Cools, S., Analyzing and improving maximal attainable accuracy in the communication hiding pipelined BiCGStab method, Parallel Computing, 86, 3, 16-35 (2019) · doi:10.1016/j.parco.2019.05.002
[11] Ding, F., Combined state and least squares parameter estimation algorithms for dynamic systems, Applied Mathematical Modelling, 38, 1, 403-412 (2014) · Zbl 1449.93254 · doi:10.1016/j.apm.2013.06.007
[12] Ding, F.; Chen, T., Gradient based iterative algorithms for solving a class of matrix equations, IEEE Transactions on Automatic Control, 50, 8, 1216-1221 (2005) · Zbl 1365.65083 · doi:10.1109/TAC.2005.852558
[13] Ding, F.; Chen, T., Iterative least-squares solutions of coupled Sylvester matrix equations, Systems & Control Letters, 54, 2, 95-107 (2005) · Zbl 1129.65306 · doi:10.1016/j.sysconle.2004.06.008
[14] Ding, F.; Chen, T., On iterative solutions of general coupled matrix equations, SIAM Journal on Control and Optimization, 44, 6, 2269-2284 (2006) · Zbl 1115.65035 · doi:10.1137/S0363012904441350
[15] Ding, F.; Wang, Y.; Ding, J., Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model, Digital Signal Processing, 37, 5, 100-108 (2015) · doi:10.1016/j.dsp.2014.10.005
[16] Ding, F.; Zhang, H., Gradient-based iterative algorithm for a class of the coupled matrix equations related to control systems, IET Control Theory & Applications, 8, 15, 1588-1595 (2015) · doi:10.1049/cth2.v8.15
[17] Gan, M.; Philip Chen, C.; Chen, L.; Zhang, C. Y., Exploiting the interpretability and forecasting ability of the RBF-AR model for nonlinear time series, International Journal of Systems Science, 47, 8, 1868-1876 (2016) · Zbl 1335.62132 · doi:10.1080/00207721.2014.955552
[18] Garcia, S. G.; Rubio, R. G.; Bretones, A. R.; Lopez, R. G., Revisiting the Stability of Crank-Nicolson and ADI-FDTD, IEEE Transactions on Antennas and Propagation, 55, 11, 3199-3203 (2007) · Zbl 1369.78764 · doi:10.1109/TAP.2007.908794
[19] Geng, L.; Zhang, T.; Xiao, D.; Song, J., Attitude model identification of on-orbit satellites, Aircraft Engineering and Aerospace Technology, 81, 2, 149-154 (2009) · doi:10.1108/00022660910941848
[20] Geng, L. H.; Xiao, D. Y.; Wang, Q.; Zhang, T.; Song, J. Y., Attitude-control model identification of on-orbit satellites actuated by reaction wheels, Acta Astronautica, 66, 5-6, 714-721 (2010) · doi:10.1016/j.actaastro.2009.08.013
[21] Golub, G. H.; Van Loan, C., Matrix computations (2013), The Johns Hopkins University Press · Zbl 1268.65037
[22] Grothe, O., A higher order correlation unscented Kalman filter, Applied Mathematics and Computation, 219, 17, 9033-9042 (2013) · Zbl 1287.93093 · doi:10.1016/j.amc.2013.03.019
[23] Gu, Y.; Ding, R., A least squares identification algorithm for a state space model with multi-state delays, Applied Mathematics Letters, 26, 7, 748-753 (2013) · Zbl 1307.93435 · doi:10.1016/j.aml.2013.02.005
[24] Guoqiang, Y., Weiguang, L., & Hao, W (2015). Study of RBF neural network based on PSO algorithm in nonlinear system identification. In 2015 8th International Conference on Intelligent Computation Technology and Automation (pp. 852-855). IEEE.
[25] Hajarian, M., Matrix form of the Bi-CGSTAB method for solving the coupled Sylvester matrix equations, IET Control Theory & Applications, 7, 14, 1828-1833 (2013) · doi:10.1049/cth2.v7.14
[26] Hajarian, M., Conjugate gradient-like methods for solving general tensor equation with Einstein product, Journal of the Franklin Institute, 357, 7, 4272-4285 (2020) · Zbl 1440.65050 · doi:10.1016/j.jfranklin.2020.01.010
[27] Hajarian, M., Partially doubly symmetric solutions of general Sylvester matrix equations, Transactions of the Institute of Measurement and Control, 42, 3, 503-517 (2020) · doi:10.1177/0142331219875273
[28] Hajarian, M.; Chronopoulos, A. T., Least-squares partially bisymmetric solutions of coupled Sylvester matrix equations accompanied by a prescribed submatrix constraint, Mathematical Methods in the Applied Sciences, 44, 6, 4297-4315 (2021) · Zbl 1471.15008 · doi:10.1002/mma.v44.6
[29] He, W.; Gao, H.; Zhou, C.; Yang, C.; Li, Z., Reinforcement learning control of a flexible two-link manipulator: An experimental investigation, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 28, 5, 1902-1914 (2020) · doi:10.1109/TSMC.2020.2975232
[30] He, W.; Li, Z.; Chen, C. P., A survey of human-centered intelligent robots: Issues and challenges, IEEE/CAA Journal of Automatica Sinica, 4, 4, 602-609 (2017) · doi:10.1109/JAS.6570654
[31] He, W.; Mu, X.; Zhang, L.; Zou, Y., Modeling and trajectory tracking control for flapping-wing micro aerial vehicles, IEEE/CAA Journal of Automatica Sinica, 8, 1, 148-156 (2020) · doi:10.1109/JAS.6570654
[32] Hu, Y.; Liu, B.; Zhou, Q.; Yang, C., Recursive extended least squares parameter estimation for Wiener nonlinear systems with moving average noises, Circuits, Systems, and Signal Processing, 33, 2, 655-664 (2014) · doi:10.1007/s00034-013-9652-x
[33] Kalita, J. C.; Upadhyaya, P.; Gupta, M. M., Optimized BiCGStab based GPU accelerated computation of incompressible viscous flows by the \(####\) formulation, Mathematics in Computer Science, 3, 1477-1495 (2017) · doi:10.1007/s40819-017-0403-8
[34] Li, M.; Liu, X., Maximum likelihood least squares based iterative estimation for a class of bilinear systems using the data filtering technique, International Journal of Control, Automation and Systems, 18, 6, 1581-1592 (2020) · doi:10.1007/s12555-019-0191-5
[35] Li, P.; Goodall, R.; Kadirkamanathan, V., Estimation of parameters in a linear state space model using a Rao-Blackwellised particle filter, IEE Proceedings-Control Theory and Applications, 151, 6, 727-738 (2004) · doi:10.1049/ip-cta:20041008
[36] Liu, C., Shi, K., & Wang, F (2014). Mass and mass center identification of target satellite after rendezvous and docking. In Proceeding of the 11th World Congress on Intelligent Control and Automation (pp. 5802-5807). IEEE.
[37] Liu, R.; Cao, X.; Liu, M.; Zhu, Y., 6-DOF fixed-time adaptive tracking control for spacecraft formation flying with input quantization, Information Sciences, 475, 2, 82-99 (2019) · Zbl 1448.93163 · doi:10.1016/j.ins.2018.09.041
[38] Liu, S.; Zhang, Y.; Xu, L.; Ding, F.; Alsaedi, A.; Hayat, T., Extended gradient-based iterative algorithm for bilinear state-space systems with moving average noises by using the filtering technique, International Journal of Control, Automation and Systems, 19, 4, 1597-1606 (2021) · doi:10.1007/s12555-019-0831-9
[39] Liu, Y.; Ding, F., Convergence properties of the least squares estimation algorithm for multivariable systems, Applied Mathematical Modelling, 37, 1-2, 476-483 (2013) · Zbl 1349.74043 · doi:10.1016/j.apm.2012.03.007
[40] Luo, J.; Bosch, P., Performance robustness of Kalman filters for uncertain linear discrete-time systems, IFAC Proceedings Volumes, 29, 1, 3870-3875 (1996) · doi:10.1016/S1474-6670(17)58283-X
[41] Ma, X.; Ding, F., Gradient-based parameter identification algorithms for observer canonical state space systems using state estimates, Circuits, Systems, and Signal Processing, 34, 5, 1697-1709 (2015) · Zbl 1341.93091 · doi:10.1007/s00034-014-9911-5
[42] Ma, X.; Ding, F., Recursive and iterative least squares parameter estimation algorithms for observability canonical state space systems, Journal of The Franklin Institute, 352, 1, 248-258 (2015) · Zbl 1307.93405 · doi:10.1016/j.jfranklin.2014.10.024
[43] Ma, Y.; Jiang, B.; Tao, G.; Cheng, Y., Actuator failure compensation and attitude control for rigid satellite by adaptive control using quaternion feedback, Journal of The Franklin Institutet, 351, 1, 296-314 (2014) · Zbl 1293.93249 · doi:10.1016/j.jfranklin.2013.08.028
[44] Ma, Y.; Jiang, B.; Tao, G.; Cheng, Y., Uncertainty decomposition-based fault-tolerant adaptive control of flexible spacecraft, IEEE Transactions on Aerospace and Electronic Systems, 51, 2, 1053-1068 (2015) · doi:10.1109/TAES.2014.130032
[45] Misra, G., Peng, H., & Bai, X (2018). Halo orbit station-keeping using nonlinear MPC and polynomial optimization. In 2018 Space Flight Mechanics Meeting (p. 1454). AIAA.
[46] Navabi, M.; Barati, M., Mathematical modeling and simulation of the earth’s magnetic field: A comparative study of the models on the spacecraft attitude control application, Applied Mathematical Modelling, 46, 365-381 (2017) · Zbl 1443.86014 · doi:10.1016/j.apm.2017.01.040
[47] Navabi, M.; Davoodi, A.; Reyhanoglu, M., Modeling and control of a nonlinear coupled spacecraft-fuel system, Acta Astronautica, 162, 436-446 (2019) · doi:10.1016/j.actaastro.2019.06.029
[48] Navabi, M.; Davoodi, A.; Reyhanoglu, M., Optimum fuzzy sliding mode control of fuel sloshing in a spacecraft using PSO algorithm, Acta Astronautica, 167, 331-342 (2020) · doi:10.1016/j.actaastro.2019.11.017
[49] Navabi, M.; Nasiri, N.; Dehghan, M., Modeling and numerical simulation of linear and nonlinear spacecraft attitude dynamics and gravity gradient moments: A comparative study, Communications in Nonlinear Science and Numerical Simulation, 17, 2, 1065-1084 (2012) · Zbl 1318.70021 · doi:10.1016/j.cnsns.2011.06.035
[50] Rhudy, M. B.; Gu, Y., Online stochastic convergence analysis of the Kalman filter, International Journal of Stochastic Analysis, 2013, 2, 1-9 (2013) · Zbl 1417.93330 · doi:10.1155/2013/240295
[51] Riano-Rios, C.; Bevilacqua, R.; Dixon, W. E., Differential drag-based multiple spacecraft maneuvering and on-line parameter estimation using integral concurrent learning, Acta Astronautica, 174, 1, 189-203 (2020) · doi:10.1016/j.actaastro.2020.04.059
[52] Saad, Y., Iterative methods for sparse linear systems, 82 (2003), SIAM · Zbl 1002.65042
[53] Sidi, M. J., Spacecraft dynamics and control: A practical engineering approach, 7 (1997), Cambridge university press
[54] Sun, Y.; Luo, L.; Chen, K.; Qin, X.; Zhang, Q., A time-domain method for load identification using moving weighted least square technique, Computers & Structures, 234, 5 (2020) · doi:10.1016/j.compstruc.2020.106254
[55] Suo, M., Chen, X., & Li, S (2015). Identification of mass characteristic parameters for spacecraft based on differential evolution algorithm. In 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (pp. 1967-1971). IEEE.
[56] Tsiotras, P.; Valverde, A., Dual quaternions as a tool for modeling, control, and estimation for spacecraft robotic servicing missions, The Journal of the Astronautical Sciences, 67, 2, 595-629 (2020) · doi:10.1007/s40295-019-00181-4
[57] Tu, Y.; Wang, D.; Li, W.; Li, M., Optimisation of controller reconfiguration instant for spacecraft control systems with additive actuator faults, International Journal of Systems Science, 44, 1, 1-15 (2021) · Zbl 1483.49008 · doi:10.1080/00207721.2021.1921306
[58] Wang, C.; Tang, T., Recursive least squares estimation algorithm applied to a class of linear-in-parameters output error moving average systems, Applied Mathematics Letters, 29, 3, 36-41 (2014) · Zbl 1311.93082 · doi:10.1016/j.aml.2013.10.011
[59] Wang, D., Least squares-based recursive and iterative estimation for output error moving average systems using data filtering, IET Control Theory & Applications, 5, 14, 1648-1657 (2011) · doi:10.1049/iet-cta.2010.0416
[60] Xiaowei, D., Aiguo, W., Jun, D., & Kejie, Y (2016). Chaotic synchronization and parameter identification of fractional-order dynamical equation with attitude of spacecraft. In 2016 Chinese Control and Decision Conference (pp. 1456-1461). IEEE.
[61] Xu, L.; Ding, F.; Zhu, Q., Hierarchical Newton and least squares iterative estimation algorithm for dynamic systems by transfer functions based on the impulse responses, International Journal of Systems Science, 50, 1, 141-151 (2019) · Zbl 1482.93661 · doi:10.1080/00207721.2018.1544303
[62] Yang, C.; Gao, Z.; Li, X.; Huang, X., Adaptive fractional-order Kalman filters for continuous-time nonlinear fractional-order systems with unknown parameters and fractional-orders, International Journal of Systems Science, 1-21 (2021) · Zbl 1483.93323 · doi:10.1080/00207721.2021.1904303
[63] Yang, Y., & Shi, Y (2019). State and parameter estimation algorithm for state space model based on linear neural network and Kalman filter. In 2019 IEEE International Conference on Mechatronics and Automation (pp. 2314-2318). IEEE.
[64] Zare, H.; Hajarian, M., An efficient Gauss-Newton algorithm for solving regularized total least squares problems, Numerical Algorithms, 1-25 (2021) · Zbl 1490.65073 · doi:10.1007/s11075-021-01145-2
[65] Zhang, H.; Shi, Y.; Wang, J., Observer-based tracking controller design for networked predictive control systems with uncertain Markov delays, International Journal of Control, 86, 10, 1824-1836 (2013) · Zbl 1312.93022 · doi:10.1080/00207179.2013.797107
[66] Zhang, X.; Ding, F., Hierarchical parameter and state estimation for bilinear systems, International Journal of Systems Science, 51, 2, 275-290 (2020) · Zbl 1483.93677 · doi:10.1080/00207721.2019.1704093
[67] Zhu, B.; Zhang, Z.; Zhou, D.; Ma, J.; Li, S., Prediction-based sampled-data H-controller design for attitude stabilisation of a rigid spacecraft with disturbances, International Journal of Systems Science, 48, 11, 2356-2367 (2017) · Zbl 1372.93137 · doi:10.1080/00207721.2017.1316883
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.