×

A new smoothing spectral conjugate gradient method for solving tensor complementarity problems. (English) Zbl 1513.90203

Summary: In recent years, the tensor complementarity problem has attracted widespread attention and has been extensively studied. The research work of tensor complementarity problem mainly focused on theory, solution methods and applications. In this paper, we study the solution method of tensor complementarity problem. Based on the equivalence relation of the tensor complementarity problem and unconstrained optimization problem, we propose a new smoothing spectral conjugate gradient method with Armijo line search. Under mild conditions, we establish the global convergence of the proposed method. Finally, some numerical results are given to show the effectiveness of the proposed method and verify our theoretical results.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
65K05 Numerical mathematical programming methods
15A69 Multilinear algebra, tensor calculus
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Al-Baali; Y. Narushima; H. Yabe, A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization, Comput. Optim. Appl., 60, 89-110 (2015) · Zbl 1315.90051
[2] M. Aliyu; P. Kumam; B. Auwal, A modified conjugate gradient method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 145, 507-520 (2019) · Zbl 1477.65079
[3] S. Babaie-Kafaki; R. Ghanbari; N. Mahdavi-Amiri, Two new conjugate gradient methods based on modified secant equations, J. Comput. Appl. Math., 234, 1374-1386 (2010) · Zbl 1202.65071
[4] X. Bai; Z. Huang; Y. Wang, Global uniqueness and solvability for tensor complementarity problems, J. Optim. Theory Appl., 170, 72-84 (2016) · Zbl 1344.90056
[5] J. Barzilai; J. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal., 8, 141-148 (1988) · Zbl 0638.65055
[6] E. Birgin; J. Martínez, A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim., 43, 117-128 (2001) · Zbl 0990.90134
[7] S. Bojari; M. Eslahchi, Two families of scaled three-term conjugate gradient methods with sufficient descent property for nonconvex optimization, Numer. Algor., 83, 901-933 (2020) · Zbl 1436.90109
[8] K. Chang; K. Pearson; T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6, 507-520 (2008) · Zbl 1147.15006
[9] M. Che; L. Qi; Y. Wei, Positive-definite tensors to nonlinear complementarity problems, J. Optim. Theory Appl., 168, 475-487 (2016) · Zbl 1334.90174
[10] B. Chen; P. Harker, Smooth approximations to nonlinear complementarity problems, SIAM J. Optim., 7, 403-420 (1997) · Zbl 0879.90177
[11] C. Chen; L. Zhang, Finding Nash equilibrium for a class of multi-person noncooperative games via solving tensor complementarity problem, Appl. Number. Math., 145, 458-468 (2019) · Zbl 1426.91011
[12] Y. Dai; Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10, 177-182 (1999) · Zbl 0957.65061
[13] Y. Dai; L. Liao; D. Li, On restart procedures for the conjugate gradient method, Numer. Algor., 35, 249-260 (2004) · Zbl 1137.90669
[14] W. Ding; L. Qi; Y. Wei, \( \mathcal M\)-tensors and nonsingular \(\mathcal M\)-tensors, Linear Algebra Appl., 439, 3264-3278 (2013) · Zbl 1283.15074
[15] W. Ding; Y. Wei, Solving multi-linear systems with \(\mathcal M\)-tensors, J. Sci. Comput., 68, 689-715 (2016) · Zbl 1371.65032
[16] W. Ding; Z. Luo; L. Qi, \( \mathcal P\)-tensors, \( \mathcal P_0\)-tensors, and their applications, Linear Algebra Appl., 555, 336-354 (2018) · Zbl 1396.15020
[17] S. Du; L. Zhang; C. Chen; L. Qi, Tensor absolute value equations, Sci. China Math., 61, 1695-1710 (2018) · Zbl 1401.15024
[18] S. Du; L. Zhang, A mixed integer programming approach to the tensor complementarity problem, J. Glob. Optim., 73, 789-800 (2019) · Zbl 1425.90072
[19] S. Du; M. Che; Y. Wei, Stochastic structured tensors to stochastic complementarity problems, Comput. Optim. Appl., 75, 649-668 (2020) · Zbl 1441.15017
[20] R. Fletcher; C. Reeves, Function minimization by conjugate gradients, Comput. J., 7, 149-154 (1964) · Zbl 0132.11701
[21] M. Gowda, Z. Luo, L. Qi and N. Xiu, \( \mathcal Z\)-tensors and complementarity problems, arXiv: 1510.07933v2
[22] W. Hager; H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim., 16, 170-192 (2005) · Zbl 1093.90085
[23] L. Han, A continuation method for tensor complementarity problems, J. Optim. Theory Appl., 180, 949-963 (2019) · Zbl 1409.90201
[24] M. Hestenes; E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49, 409-436 (1952) · Zbl 0048.09901
[25] S. Hu; Z. Huang; C. Ling; L. Qi, On determinants and eigenvalue theory of tensors, J. Symb. Comput., 50, 508-531 (2013) · Zbl 1259.15038
[26] Z. Huang; L. Qi, Formulating an n-person noncoorperative game as a tensor complementarity problem, Comput. Optim. Appl., 66, 557-576 (2017) · Zbl 1393.90120
[27] Z. Huang; L. Qi, Tensor complementarity problems-Part I: Basic theory, J. Optim. Theory Appl., 183, 1-23 (2019) · Zbl 1434.90203
[28] Z. Huang; L. Qi, Tensor complementarity problems-Part III: Applications, J. Optim. Theory Appl., 183, 771-791 (2019) · Zbl 1433.90169
[29] X. Jiang; J. Jian, Improved Fletcher-Reeves and Dai-Yuan conjugate gradient methods with the strong Wolfe line search, J. Comput. Appl. Math., 348, 525-534 (2019) · Zbl 1409.90092
[30] Y. Li; S. Du; L. Zhang, Tensor quadratic eigenvalue complementarity problem, Pac. J. Optim., 17, 251-268 (2021) · Zbl 07379566
[31] C. Ling; H. He; L. Qi, On the cone eigenvalue complementarity problem for higher-order tensors, Comput. Optim. Appl., 63, 143-168 (2016) · Zbl 1339.15008
[32] C. Ling; H. He; L. Qi, Higher-degree eigenvalue complementarity problems for tensors, Comput. Optim. Appl., 64, 149-176 (2016) · Zbl 1338.15027
[33] C. Ling; W. Yan; H. He; L. Qi, Further study on tensor absolute value equations, Sci. China Math., 63, 2137-2156 (2020) · Zbl 1469.15017
[34] D. Liu; W. Li; S. Vong, Tensor complementarity problems: The GUS-property and an algorithm, Linear Multilinear A., 66, 1726-1749 (2018) · Zbl 06916832
[35] J. Liu; S. Du; Y. Chen, A sufficient descent nonlinear conjugate gradient method for solving \(\mathcal M\)-tensor equations, J. Comput. Appl., 371, 112709 (2020) · Zbl 1433.65115
[36] I. Livieris; P. Pintelas, A new class of spectral conjugate gradient methods based on a modified secant equation for unconstrained optimization, J. Comput. Appl. Math., 239, 396-405 (2013) · Zbl 1258.65058
[37] Z. Luo; L. Qi; N. Xiu, The sparsest solutions to \(\mathcal Z\)-tensor complementarity problems, Optim. Lett., 11, 471-482 (2017) · Zbl 1394.90540
[38] G. Meurant, On prescribing the convergence behavior of the conjugate gradient algorithm, Numer. Algor., 84, 1353-1380 (2020) · Zbl 1451.65033
[39] Q. Ni; L. Qi, A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map, J. Global Optim., 61, 627-641 (2015) · Zbl 1342.90150
[40] M. Powell, Restart procedures for the conjugate gradient method, Math. Program., 12, 241-254 (1977) · Zbl 0396.90072
[41] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40, 1302-1324 (2005) · Zbl 1125.15014
[42] L. Qi, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439, 228-238 (2013) · Zbl 1281.15025
[43] L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2017. · Zbl 1370.15001
[44] L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, Advances in Mechanics and Mathematics, 39. Springer, Singapore, 2018. · Zbl 1398.15001
[45] L. Qi; Z. Huang, Tensor complementarity problems-Part II: Solution methods, J. Optim. Theory Appl., 183, 365-385 (2019) · Zbl 1429.90082
[46] Y. Song; L. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165, 854-873 (2015) · Zbl 1390.15085
[47] Y. Song; L. Qi, Tensor complementarity problem and semi-positive tensors, J. Optim. Theory Appl., 169, 1069-1078 (2016) · Zbl 1349.90803
[48] Y. Song; L. Qi, Properties of tensor complementarity problem and some classes of structured tensors, Ann. Appl. Math., 33, 308-323 (2017) · Zbl 1399.15036
[49] Z. Wan; Z. Yang; Y. Wang, New spectral PRP conjugate gradient method for unconstrained optimization, Appl. Math. Lett., 24, 16-22 (2011) · Zbl 1208.49039
[50] X. Wang; M. Che; Y. Wei, Global uniqueness and solvability of tensor complementarity problems for \(\mathcal{H}_+\)-tensors, Numer. Algorithms, 84, 567-590 (2020) · Zbl 1448.15035
[51] X. Wang, M. Che and Y. Wei, Preconditioned tensor splitting AOR iterative methods for \(\mathcal H\)-tensor equations,, Numer. Linear Algebra Appl., 27 (2020), e2329. · Zbl 1488.65109
[52] S. Xie; D. Li; H. Xu, An iterative method for finding the least solution to the tensor complementarity problem, J. Optim. Theory Appl., 175, 119-136 (2017) · Zbl 1375.90291
[53] H. Xu; D. Li; S. Xie, An equivalent tensor equation to the tensor complementarity problem with positive semi-definite \(\mathcal Z\)-tensor, Optim. Lett., 13, 685-694 (2019) · Zbl 1428.90167
[54] Y. Yang; Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors II, SIAM J. Matrix Anal. Appl., 32, 1236-1250 (2011) · Zbl 1426.15011
[55] G. Yu; L. Guan; W. Chen, Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization, Optim. Methods Softw., 23, 275-293 (2008) · Zbl 1279.90166
[56] G. Yuan; X. Wang; Z. Sheng, Family weak conjugate gradient algorithms and their convergence analysis for nonconvex functions, Numer. Algor., 84, 935-956 (2020) · Zbl 1461.65190
[57] K. Zhang; H. Chen; P. Zhao, A potential reduction method for tensor complementarity problems, J. Ind. Manag. Optim., 15, 429-443 (2019) · Zbl 1438.90370
[58] L. Zhang; W. Zhou; D. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search, Numer. Math., 104, 561-572 (2006) · Zbl 1103.65074
[59] L. Zhang; W. Zhou, On the global convergence of the Hager-Zhang conjugate gradient method with the Armijo line search, Acta Math. Sci., 28, 840-845 (2008) · Zbl 1174.90892
[60] L. Zhang; L. Qi; G. Zhou, \( \mathcal M\)-tensors and some applications, SIAM J. Matrix Anal. Appl., 35, 437-452 (2014) · Zbl 1307.15034
[61] G. Zhou; L. Qi; S. Wu, On the largest eigenvalue of a symmetric nonnegative tensor, Numer. Linear Algebra Appl., 20, 913-928 (2013) · Zbl 1313.15020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.