×

Survival in branching cellular populations. (English) Zbl 1516.92039

Summary: We analyze evolutionary dynamics in a confluent, branching cellular population, such as in a growing duct, vasculature, or in a branching microbial colony. We focus on the coarse-grained features of the evolution and build a statistical model that captures the essential features of the dynamics. Using simulations and analytic approaches, we show that the survival probability of strains within the growing population is sensitive to the branching geometry: Branch bifurcations enhance survival probability due to an overall population growth (i.e., “inflation”), while branch termination and the small effective population size at the growing branch tips increase the probability of strain extinction. We show that the evolutionary dynamics may be captured on a wide range of branch geometries parameterized just by the branch diameter \(N_0\) and branching rate \(b\). We find that the survival probability of neutral cell strains is largest at an “optimal” branching rate, which balances the effects of inflation and branch termination. We find that increasing the selective advantage \(s\) of the cell strain mitigates the inflationary effect by decreasing the average time at which the mutant cell fate is determined. For sufficiently large selective advantages, the survival probability of the advantageous mutant decreases monotonically with the branching rate.

MSC:

92D15 Problems related to evolution
92C15 Developmental biology, pattern formation
92D10 Genetics and epigenetics

Software:

GitHub
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Affolter, M.; Zeller, R.; Caussinus, E., Tissue remodelling through branching morphogenesis, Nat. Rev. Mol. Cell Biol., 10, 831-842 (2009)
[2] Ali, A.; Grosskinsky, S., Pattern formation through genetic drift at expanding population fronts, Adv. Complex Syst., 13, 3, 349-366 (2010) · Zbl 1205.92050
[3] Arvo, J., Fast random rotation matrices, (Kirk, D., Graphics Gems III (1992), Academic Press Inc.: Academic Press Inc. London), 117-120
[4] Brown, K. S.; Bassler, K. E.; Browne, D. A., Mean-field analysis and Monte Carlo study of an interacting two-species reaction model, Phys. Rev. E, 56, 3953-3958 (1997)
[5] Bryant, A. S.; Lavrentovich, M. O., Survival probabilities in branching cellular populations (2020), GitHub Repository, https://github.com/lavrentm/Survival-Probabilities-in-Branching-Cellular-Populations
[6] Chang, D. R.; Alanis, D. M.; Miller, R. K.; Ji, H.; Akiyama, H.; McCrea, P. D.; Chen, J., Lung epithelial branching program antagonizes alveolar differentiation, Proc. Natl. Acad. Sci. USA, 110, 45, 18042-18051 (2013)
[7] Crow, J. F.; Kimura, M., An Introduction To Population Genetics Theory (1970), Harper & Row: Harper & Row New York · Zbl 0246.92003
[8] Doering, C. R.; Mueller, C.; Smereka, P., Interacting particles, the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation, and duality, Physica A, 325, 243-259 (2003) · Zbl 1025.60027
[9] Excoffier, L.; Foll, M.; Petit, R. J., Genetic consequences of range expansions, Annu. Rev. Ecol. Evol. Syst., 40, 481-501 (2009)
[10] Farrell, F. D.; Gralka, M.; Hallatschek, O.; Waclaw, B., Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations, J. R. Soc. Interface, 14, Article 20170073 pp. (2017)
[11] Fujishige, N. A.; Kapadia, N. N.; Hirsch, A. M., A feeling for the micro-organism: structure on a small scale. Biofilms on plant roots, Bot. J. Linnean Soc., 150, 79-88 (2006)
[12] Giometto, A.; Nelson, D. R.; Murray, A. W., Physical interactions reduce the power of natural selection in growing yeast colonies, Proc. Natl. Acad. Sci. USA, 115, 45, 11448-11453 (2018)
[13] Grant, E. H.C.; Lowe, W. H.; Fagan, W. F., Living in the branches: population dynamics and ecological processes in dendritic networks, Ecol. Lett., 10, 165-175 (2007)
[14] Hallatschek, O.; Hersen, P.; Ramanathan, S.; Nelson, D. R., Genetic drift at expanding frontiers promotes gene segregation, Proc. Natl. Acad. Sci. USA, 104, 50, 19926-19930 (2007)
[15] Hannezo, E.; Scheele, C. L.G. J.; Moad, M.; Drogo, N.; Heer, R.; Sampogna, R. V.; van Rheenen, J.; Simons, B. D., A unifying theory of branching morphogenesis, Cell, 171, 242-255 (2017)
[16] Hu, Z.; Sun, R.; Curtis, C., A population genetics perspective on the determinants of intra-tumor heterogeneity, Biochim. Biophys. Acta, Rev. Cancer, 1867, 109-126 (2017)
[17] Iber, D.; Menshykau, D., The control of branching morphogenesis, Open Biol., 3, Article 130088 pp. (2013)
[18] Kilanowski, H. P.; March, P.; Šamara, M., Convergence of the freely rotating chain to the Kratky-Porod model of semi-flexible polymers, J. Stat. Phys., 174, 1222-1238 (2019) · Zbl 1499.82053
[19] Klein, D. J.; Seitz, W. A., Self-similar self-avoiding structures: Models for polymers, Proc. Natl. Acad. Sci. USA, 80, 10, 3125-3128 (1983)
[20] Klein, D. J.; Seitz, W. A.; Kilpatrick, J. E., Branched polymer models, J. Appl. Phys., 53, 10, 6599-6603 (1982)
[21] Korolev, K. S.; Avlund, M.; Hallatschek, O.; Nelson, D. R., Genetic demixing and evolution in linear stepping stone models, Rev. Modern Phys., 82, 2, 1691-1718 (2010)
[22] Kratky, O.; Porod, G., Röntgenuntersuchung gelöster fadenmoleküle, Recl. Trav. Chim. Pays-Bas, 68, 12, 1106-1122 (1949)
[23] Ksu, H.-P.; Paul, W.; Binder, K., Polymer chain stiffness vs. excluded volume: A Monte Carlo study of the crossover towards the worm-like chain model, Europhys. Lett., 92, 2, Article 28003 pp. (2010)
[24] Lavrentovich, M. O.; Korolev, K. S.; Nelson, D. R., Radial Domany-Kinzel models with mutation and selection, Phys. Rev. E, 87, Article 012103 pp. (2013)
[25] Lavrentovich, M. O.; Nelson, D. R., Survival probabilities at spherical frontiers, Theor. Popul. Biol., 102, 26-39 (2015) · Zbl 1342.92140
[26] Lavrentovich, M. O.; Wahl, M. E.; Nelson, D. R.; Murray, A. W., Spatially constrained growth enhances conversional meltdown, Biophys. J., 110, 2800-2808 (2016)
[27] Less, J. R.; Skalak, T. C.; Sevick, E. M.; Jain, R. K., Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions, Cancer Res., 51, 265-273 (1991)
[28] Lieberman, E.; Hauert, C.; Nowak, M. A., Evolutionary dynamics on graphs, Nature, 433, 312-316 (2005)
[29] Luo, N.; Wang, S.; Lu, J.; Ouyang, X.; You, L., Collective colony growth is optimized by branching pattern formation in Pseudomonas aeruginosa, Mol. Syst. Biol., 17, Article e10089 pp. (2021)
[30] Makki, J., Diversity of breast carcinoma: Histological subtypes and clinical relevance, Clin. Med. Insights Pathol., 8, 23-31 (2015)
[31] Marusyk, A.; Polyak, K., Tumor heterogeneity: Causes and consequences, Biochim. Biophys. Acta, Rev. Cancer, 1805, 105-117 (2010)
[32] Maruyama, T., A simple proof that certain quantities are independent of the geographical structure of population, Theor. Popul. Biol., 5, 148-154 (1974)
[33] Merks, R.; Hoekstra, A.; Kaandorp, J.; Sloot, P., Models of coral growth: spontaneous branching, compactification and the Laplacian growth assumption, J. Theoret. Biol., 224, 153-166 (2003) · Zbl 1464.92045
[34] Merks, R. M.H.; Hoekstra, A. G.; Kaandorp, J. A.; Sloot, P. M.A., Polyp oriented modelling of coral growth, J. Theoret. Biol., 228, 559-576 (2004) · Zbl 1439.92036
[35] Moran, P. A.P., Random processes in genetics, Math. Proc. Camb. Phil. Soc., 54, 1, 60-71 (1958) · Zbl 0091.15701
[36] Ochoa-Espinosa, A.; Affolter, M., Branching morphogenesis: from cells to organs and back, Cold Spring Harb. Perspect. Biol., 4, 10, Article a008243 pp. (2012)
[37] Paine, I.; Chauviere, A.; Landua, J.; Sreekumar, A.; Christini, V.; Rosen, J., A geometrically-constrained mathematical model of mammary gland ductal elongation reveals novel cellular dynamics within the terminal end bud, PLoS Comput. Biol., 12, Article e1004839 pp. (2016)
[38] Pigolotti, S.; Benzi, R.; Perlekar, P.; Jensen, M. H.; Toschi, F.; Nelson, D. R., Growth, competition and cooperation in spatial population genetics, Theor. Popul. Biol., 84, 72-86 (2013) · Zbl 1275.92089
[39] Raz, D. J.; He, B.; Rosell, R.; Jablons, D. M., Bronchioloalveolar carcinoma: A review, Clin. Lung Cancer, 7, 5, 313-322 (2006)
[40] Redner, S., A Guide To First-Passage Processes (2001), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0980.60006
[41] Scheele, C. L.G. J.; Hannezo, E.; Muraro, M. J.; Zomer, A.; Langedijk, N. S.M.; van Oudenaarden, A.; Simons, B. D.; van Rheenen, J., Identity and dynamics of mammary stem cells during branching morphogenesis, Nature, 542, 313-317 (2017)
[42] Spurlin, J. W.; Nelson, C. M., Building branched tissue structures: from single cell guidance to coordinated construction, Philos. Trans. R. Soc. B, 372, Article 20150527 pp. (2017)
[43] Tronnolone, H.; Tam, A.; Szenczi, Z.; Green, J. E.F.; Balasuriya, S.; Tek, E. L.; Gardner, J. M.; Sundstrom, J. F.; Jiranek, V.; Oliver, S. G.; Binder, B. J., Diffusion-limited growth of microbial colonies, Sci. Rep., 8, Article 5992 pp. (2018)
[44] West, J.; Schenck, R. O.; Gatenbee, C.; Robertson-Tessi, M.; Anderson, A. R.A., Normal tissue architecture determines the evolutionary course of cancer, Nature Commun., 12, Article 2060 pp. (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.