×

Global existence and blow up of the solution for nonlinear Klein-Gordon equation with variable coefficient nonlinear source term. (English) Zbl 1500.35108


MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35A01 Existence problems for PDEs: global existence, local existence, non-existence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T. D. Lee, Particle Physics and Introduction to Field Theory, Harwood Academic Publishers, New York, 1981.
[2] P. J. Drazin and R. S. Johnson, Solitons: An Introduction, Cambridge University Press, Cambridge, 1989. · Zbl 0661.35001
[3] T. Cazenave, Uniform estimates for solutions of nonlinear Klein-Gordon equations, J. Funct. Anal. 60 (1985), no. 1, 36-55, DOI: https://doi.org/10.1016/0022-1236(85)90057-6. · Zbl 0568.35068
[4] F. E. Browder, On nonlinear wave equations, Math. Z. 80 (1962), 249-264, . · Zbl 0109.32102 · doi:10.1007/BF01162382
[5] J. C. H. Simon, A wave operator for a non-linear Klein-Gordon equation, Lett. Math. Phys. 7 (1983), no. 5, 387-398, . · Zbl 0539.35007 · doi:10.1007/BF00398760
[6] M. Nakao, Remarks on the energy decay for nonlinear wave equations with nonlinear localized dissipative terms, Nonlinear. Anal. 73 (2010), no. 7, 2158-2169, . · Zbl 1195.35221 · doi:10.1016/j.na.2010.05.042
[7] Y. B. Yang and R. Z. Xu, Finite time blowup for nonlinear Klein-Gordon equation with arbitrarily positive initial energy, Appl. Math. Lett. 77 (2018), 21-26, . · Zbl 1382.35056 · doi:10.1016/j.aml.2017.09.014
[8] M. O. Korpusov, A. N. Levashov, and D. V. Lukyanenko, Analytical-numerical study of finite-time blow-up of the Solution to the initial-boundary value problem for the nonlinear Klein-Gordon equation, Comput. Math. Math. Phys. 60 (2020), no. 1, 1452-1460, . · Zbl 1451.35032 · doi:10.1134/S0965542520090109
[9] K. T. Li and Q. D. Zhang, Existence and nonexistence of global solutions for the equation of dissociation of crystals, J. Differential Equations 146 (1998), no. 1, 5-21, . · Zbl 0926.35073 · doi:10.1006/jdeq.1998.3409
[10] Z. H. Gan, B. L. Guo, and J. Zhang, Sharp threshold of global existence for the Klein-Gordon equations with critical nonlinearity, Acta Math. Appl. Sin. Engl. Ser. 25 (2009), no. 2, 273-282, . · Zbl 1180.35362 · doi:10.1007/s10255-007-7085-7
[11] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation-II, Ann. Inst. H. Poincare C Anal. Non Lineaire 6 (1989), no. 1, 15-35, DOI: https://doi.org/10.1016/S0294-1449(16)30329-8. · Zbl 0694.35153
[12] J. Lu and Q. Miao, Sharp threshold of global existence and blow-up of the combined nonlinear Klein-Gordon equation, J. Math. Anal. Appl. 474 (2019), no. 2, 814-832, . · Zbl 1418.35272 · doi:10.1016/j.jmaa.2019.01.058
[13] Y. J. Wang, A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc. 136 (2008), no. 10, 3477-3482, . · Zbl 1154.35064 · doi:10.1090/S0002-9939-08-09514-2
[14] R. Z. Xu, Global existence, blow up and asymptotic behavior of solutions for nonlinear Klein-Gordon equation with dissipative term, Math. Methods Appl. Sci. 33 (2010), no. 7, 831-844, . · Zbl 1194.35270 · doi:10.1002/mma.1196
[15] L. E. Payne and D. H. Sattinger, Sadle points and instability of nonlinear hyperbolic equations, Israel J. Math. 23 (1975), no. 3, 273-303, . · Zbl 0317.35059 · doi:10.1007/BF02761595
[16] F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincare C Anal. Non Lineaire 23 (2006), no. 2, 185-207, . · Zbl 1094.35082 · doi:10.1016/j.anihpc.2005.02.007
[17] T. L. Chen and Y. X. Chen, On family of potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear. Anal. 198 (2020), 1-19, . · Zbl 1442.35028 · doi:10.1016/j.na.2020.111898
[18] Y. C. Liu and J. S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equation, Nonlinear. Anal. 64 (2006), 2665-2687, . · Zbl 1096.35089 · doi:10.1016/j.na.2005.09.011
[19] K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci. 20 (1997), no. 2, 151-177. · Zbl 0878.35081
[20] M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24, Birkhäuser Boston, Boston, 1996. · Zbl 0856.49001
[21] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt=−Au+F(u), Trans. Amer. Math. Soc. 192 (1974), 1-21, . · Zbl 0288.35003 · doi:10.1090/S0002-9947-1974-0344697-2
[22] H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal. 5 (1974), no. 1, 138-146, . · Zbl 0243.35069 · doi:10.1137/0505015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.