×

zbMATH — the first resource for mathematics

On the geometry of unitary groups. (English) Zbl 0428.14023

MSC:
14L35 Classical groups (algebro-geometric aspects)
14L40 Other algebraic groups (geometric aspects)
20G15 Linear algebraic groups over arbitrary fields
20E07 Subgroup theorems; subgroup growth
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bass, H, Algebraic K-theory, (1968), Benjamin New York · Zbl 0174.30302
[2] Borel, A; Springer, T.A, Rationality properties of linear algebraic groups, II, Tôhoku math. J., 20, 443-497, (1968) · Zbl 0211.53302
[3] Borel, A; Tits, J, Groupes réductifs, Inst. hautes études sci. publ. math., 27, 55-150, (1965) · Zbl 0145.17402
[4] Borel, A; Tits, J, Homomorphismes “abstraits” de groupes algébriques simples, Ann. math., 97, 499-571, (1973) · Zbl 0272.14013
[5] Callan, D, The isomorphisms of unitary groups over noncommutative domains, J. algebra, 52, 475-503, (1978) · Zbl 0375.20033
[6] Demazure, M; Gabriel, P, Géométrie algébrique, généralités, groupes commutatifs, (), North-Holland, Amsterdam
[7] Dieudonné, J, La géométrie des groupes classiques, (1971), Springer-Verlag Berlin/New York · Zbl 0067.26104
[8] Hahn, A.J, The isomorphisms of certain subgroups of the isometry groups of reflexive spaces, J. algebra, 27, 205-242, (1973) · Zbl 0273.20033
[9] Johnson, A.A, The automorphisms of the unitary groups over infinite fields, Amer. J. math., 95, 87-107, (1973) · Zbl 0264.20034
[10] Kempf, G; Knudsen, F; Mumford, D; Saint-Donat, B, Toroidal embeddings I, () · Zbl 0271.14017
[11] Knebusch, M; Rosenberg, A; Ware, R, Structure of \scwitt rings and quotients of abelian group rings, Amer. J. math., 94, 119-155, (1972) · Zbl 0248.13030
[12] O’Meara, O.T, Lectures on linear groups, (1974), Amer. Math. Soc Providence, R.I · Zbl 0292.20001
[13] Weisfeiler, B, On abstract monomorphisms of k-forms of PGL(2), J. algebra, 57, 522-543, (1979) · Zbl 0406.20035
[14] \scB. Weisfeiler, Monomorphisms between subgroups of type G2, to appear. · Zbl 0453.20030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.