Weisfeiler, Boris Monomorphisms between subgroups of groups of type \(G_ 2\). (English) Zbl 0453.20030 J. Algebra 68, 306-334 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 6 Documents MSC: 20G15 Linear algebraic groups over arbitrary fields 14L40 Other algebraic groups (geometric aspects) Keywords:abstract monomorphisms; full subgroup; group of type G2; special isogeny of algebraic groups; octave algebra PDF BibTeX XML Cite \textit{B. Weisfeiler}, J. Algebra 68, 306--334 (1981; Zbl 0453.20030) Full Text: DOI References: [1] van der Blij, F; Springer, T.A, The arithmetics of octaves and of the group G2, (), 406-418 · Zbl 0089.25803 [2] Borel, A; Tits, J, Groupes réductifs, Publ. math. IHES, 27, 55-151, (1965) · Zbl 0145.17402 [3] Borel, A; Tits, J, Homomorphismes “abstrait” des groupes algebriques simples, Ann. of math., 97, 499-571, (1973) · Zbl 0272.14013 [4] Jacobson, N, Composition algebras and their automorphisms, Rend. circ. mat. Palermo, 8, 55-80, (1958) · Zbl 0083.02702 [5] James, D.G; Weisfeiler, B, On the geometry of unitary groups, J. algebra, 63, 514-540, (1980) · Zbl 0428.14023 [6] Springer, T.A, Oktaven, Jordan-algebren und ausnahmegruppen, Lecture notes, (1963), Götingen [7] Springer, T.A; Steinberg, R, Conjugacy classes, (), 167-266 · Zbl 0249.20024 [8] Steinberg, R, Lectures on Chevalley groups, (1967), ale Univ. Press New Haven, Conn [9] Steinberg, R, Abstract homomorphisms of simple algebraic groups (after A. Borel and J. Tits), sém. bourbaki, n ° 435, () [10] Tits, J, Classification of algebraic semi-simple groups, (), 33-62 [11] Weisfeiler, B, On abstract monomorphisms of k-forms of PGL(2), J. algebra, 57, 522-543, (1979) · Zbl 0406.20035 [12] Weisfeiler, B, Abstract monomorphisms between big subgroups of some groups of type B2 in characteristic 2, J. algebra, 60, 204-222, (1979) · Zbl 0429.20041 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.